These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 20932477)
1. Dynamic control of yeast MAP kinase network by induced association and dissociation between the Ste50 scaffold and the Opy2 membrane anchor. Yamamoto K; Tatebayashi K; Tanaka K; Saito H Mol Cell; 2010 Oct; 40(1):87-98. PubMed ID: 20932477 [TBL] [Abstract][Full Text] [Related]
2. Interaction between the transmembrane domains of Sho1 and Opy2 enhances the signaling efficiency of the Hog1 MAP kinase cascade in Saccharomyces cerevisiae. Takayama T; Yamamoto K; Saito H; Tatebayashi K PLoS One; 2019; 14(1):e0211380. PubMed ID: 30682143 [TBL] [Abstract][Full Text] [Related]
3. Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway. Tatebayashi K; Yamamoto K; Tanaka K; Tomida T; Maruoka T; Kasukawa E; Saito H EMBO J; 2006 Jul; 25(13):3033-44. PubMed ID: 16778768 [TBL] [Abstract][Full Text] [Related]
4. The RA domain of Ste50 adaptor protein is required for delivery of Ste11 to the plasma membrane in the filamentous growth signaling pathway of the yeast Saccharomyces cerevisiae. Truckses DM; Bloomekatz JE; Thorner J Mol Cell Biol; 2006 Feb; 26(3):912-28. PubMed ID: 16428446 [TBL] [Abstract][Full Text] [Related]
5. Scaffold Protein Ahk1, Which Associates with Hkr1, Sho1, Ste11, and Pbs2, Inhibits Cross Talk Signaling from the Hkr1 Osmosensor to the Kss1 Mitogen-Activated Protein Kinase. Nishimura A; Yamamoto K; Oyama M; Kozuka-Hata H; Saito H; Tatebayashi K Mol Cell Biol; 2016 Jan; 36(7):1109-23. PubMed ID: 26787842 [TBL] [Abstract][Full Text] [Related]
6. Binding of the Extracellular Eight-Cysteine Motif of Opy2 to the Putative Osmosensor Msb2 Is Essential for Activation of the Yeast High-Osmolarity Glycerol Pathway. Yamamoto K; Tatebayashi K; Saito H Mol Cell Biol; 2016 Feb; 36(3):475-87. PubMed ID: 26598606 [TBL] [Abstract][Full Text] [Related]
7. Hog1 mitogen-activated protein kinase (MAPK) interrupts signal transduction between the Kss1 MAPK and the Tec1 transcription factor to maintain pathway specificity. Shock TR; Thompson J; Yates JR; Madhani HD Eukaryot Cell; 2009 Apr; 8(4):606-16. PubMed ID: 19218425 [TBL] [Abstract][Full Text] [Related]
8. The role of adaptor protein Ste50-dependent regulation of the MAPKKK Ste11 in multiple signalling pathways of yeast. Ramezani-Rad M Curr Genet; 2003 Jun; 43(3):161-70. PubMed ID: 12764668 [TBL] [Abstract][Full Text] [Related]
10. Control of MAPK specificity by feedback phosphorylation of shared adaptor protein Ste50. Hao N; Zeng Y; Elston TC; Dohlman HG J Biol Chem; 2008 Dec; 283(49):33798-802. PubMed ID: 18854322 [TBL] [Abstract][Full Text] [Related]
11. Saccharomyces cerevisiae Ste50 binds the MAPKKK Ste11 through a head-to-tail SAM domain interaction. Kwan JJ; Warner N; Maini J; Chan Tung KW; Zakaria H; Pawson T; Donaldson LW J Mol Biol; 2006 Feb; 356(1):142-54. PubMed ID: 16337230 [TBL] [Abstract][Full Text] [Related]
12. Persistent activation by constitutive Ste7 promotes Kss1-mediated invasive growth but fails to support Fus3-dependent mating in yeast. Maleri S; Ge Q; Hackett EA; Wang Y; Dohlman HG; Errede B Mol Cell Biol; 2004 Oct; 24(20):9221-38. PubMed ID: 15456892 [TBL] [Abstract][Full Text] [Related]
13. A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway. Tatebayashi K; Takekawa M; Saito H EMBO J; 2003 Jul; 22(14):3624-34. PubMed ID: 12853477 [TBL] [Abstract][Full Text] [Related]
14. Solution structure of the dimeric SAM domain of MAPKKK Ste11 and its interactions with the adaptor protein Ste50 from the budding yeast: implications for Ste11 activation and signal transmission through the Ste50-Ste11 complex. Bhattacharjya S; Xu P; Gingras R; Shaykhutdinov R; Wu C; Whiteway M; Ni F J Mol Biol; 2004 Dec; 344(4):1071-87. PubMed ID: 15544813 [TBL] [Abstract][Full Text] [Related]
16. Osmosensing and scaffolding functions of the oligomeric four-transmembrane domain osmosensor Sho1. Tatebayashi K; Yamamoto K; Nagoya M; Takayama T; Nishimura A; Sakurai M; Momma T; Saito H Nat Commun; 2015 Apr; 6():6975. PubMed ID: 25898136 [TBL] [Abstract][Full Text] [Related]
17. Cdc42-Specific GTPase-Activating Protein Rga1 Squelches Crosstalk between the High-Osmolarity Glycerol (HOG) and Mating Pheromone Response MAPK Pathways. Patterson JC; Goupil LS; Thorner J Biomolecules; 2021 Oct; 11(10):. PubMed ID: 34680163 [TBL] [Abstract][Full Text] [Related]
18. Yeast osmosensors Hkr1 and Msb2 activate the Hog1 MAPK cascade by different mechanisms. Tanaka K; Tatebayashi K; Nishimura A; Yamamoto K; Yang HY; Saito H Sci Signal; 2014 Feb; 7(314):ra21. PubMed ID: 24570489 [TBL] [Abstract][Full Text] [Related]
19. Requirement of STE50 for osmostress-induced activation of the STE11 mitogen-activated protein kinase kinase kinase in the high-osmolarity glycerol response pathway. Posas F; Witten EA; Saito H Mol Cell Biol; 1998 Oct; 18(10):5788-96. PubMed ID: 9742096 [TBL] [Abstract][Full Text] [Related]
20. Mutations in the SAM domain of STE50 differentially influence the MAPK-mediated pathways for mating, filamentous growth and osmotolerance in Saccharomyces cerevisiae. Jansen G; Bühring F; Hollenberg CP; Ramezani Rad M Mol Genet Genomics; 2001 Mar; 265(1):102-17. PubMed ID: 11370856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]