These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 20932481)

  • 1. Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide.
    Bhushan S; Meyer H; Starosta AL; Becker T; Mielke T; Berninghausen O; Sattler M; Wilson DN; Beckmann R
    Mol Cell; 2010 Oct; 40(1):138-46. PubMed ID: 20932481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The arginine attenuator peptide interferes with the ribosome peptidyl transferase center.
    Wei J; Wu C; Sachs MS
    Mol Cell Biol; 2012 Jul; 32(13):2396-406. PubMed ID: 22508989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arginine changes the conformation of the arginine attenuator peptide relative to the ribosome tunnel.
    Wu C; Wei J; Lin PJ; Tu L; Deutsch C; Johnson AE; Sachs MS
    J Mol Biol; 2012 Mar; 416(4):518-33. PubMed ID: 22244852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of nascent-peptide release at translation termination.
    Cao J; Geballe AP
    Mol Cell Biol; 1996 Dec; 16(12):7109-14. PubMed ID: 8943366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionarily conserved features of the arginine attenuator peptide provide the necessary requirements for its function in translational regulation.
    Fang P; Wang Z; Sachs MS
    J Biol Chem; 2000 Sep; 275(35):26710-9. PubMed ID: 10818103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence requirements for ribosome stalling by the arginine attenuator peptide.
    Spevak CC; Ivanov IP; Sachs MS
    J Biol Chem; 2010 Dec; 285(52):40933-42. PubMed ID: 20884617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nascent peptide in the ribosome exit tunnel affects functional properties of the A-site of the peptidyl transferase center.
    Ramu H; Vázquez-Laslop N; Klepacki D; Dai Q; Piccirilli J; Micura R; Mankin AS
    Mol Cell; 2011 Feb; 41(3):321-30. PubMed ID: 21292164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanism of drug-dependent ribosome stalling.
    Vazquez-Laslop N; Thum C; Mankin AS
    Mol Cell; 2008 Apr; 30(2):190-202. PubMed ID: 18439898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nascent polypeptide domain that can regulate translation elongation.
    Fang P; Spevak CC; Wu C; Sachs MS
    Proc Natl Acad Sci U S A; 2004 Mar; 101(12):4059-64. PubMed ID: 15020769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome.
    Marzi S; Myasnikov AG; Serganov A; Ehresmann C; Romby P; Yusupov M; Klaholz BP
    Cell; 2007 Sep; 130(6):1019-31. PubMed ID: 17889647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosomal release without peptidyl tRNA hydrolysis at translation termination in a eukaryotic system.
    Cao J; Geballe AP
    RNA; 1998 Feb; 4(2):181-8. PubMed ID: 9570317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 A resolution.
    Mueller F; Sommer I; Baranov P; Matadeen R; Stoldt M; Wöhnert J; Görlach M; van Heel M; Brimacombe R
    J Mol Biol; 2000 Apr; 298(1):35-59. PubMed ID: 10756104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly conserved mechanism of regulated ribosome stalling mediated by fungal arginine attenuator peptides that appears independent of the charging status of arginyl-tRNAs.
    Wang Z; Gaba A; Sachs MS
    J Biol Chem; 1999 Dec; 274(53):37565-74. PubMed ID: 10608810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural insight into nascent polypeptide chain-mediated translational stalling.
    Seidelt B; Innis CA; Wilson DN; Gartmann M; Armache JP; Villa E; Trabuco LG; Becker T; Mielke T; Schulten K; Steitz TA; Beckmann R
    Science; 2009 Dec; 326(5958):1412-5. PubMed ID: 19933110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SecM-stalled ribosomes adopt an altered geometry at the peptidyl transferase center.
    Bhushan S; Hoffmann T; Seidelt B; Frauenfeld J; Mielke T; Berninghausen O; Wilson DN; Beckmann R
    PLoS Biol; 2011 Jan; 9(1):e1000581. PubMed ID: 21267063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary changes in the fungal carbamoyl-phosphate synthetase small subunit gene and its associated upstream open reading frame.
    Hood HM; Spevak CC; Sachs MS
    Fungal Genet Biol; 2007 Feb; 44(2):93-104. PubMed ID: 16979358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ribosomal grip of the peptidyl-tRNA is critical for reading frame maintenance.
    Näsvall SJ; Nilsson K; Björk GR
    J Mol Biol; 2009 Jan; 385(2):350-67. PubMed ID: 19013179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolutionarily conserved eukaryotic arginine attenuator peptide regulates the movement of ribosomes that have translated it.
    Wang Z; Fang P; Sachs MS
    Mol Cell Biol; 1998 Dec; 18(12):7528-36. PubMed ID: 9819438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualizing tmRNA entry into a stalled ribosome.
    Valle M; Gillet R; Kaur S; Henne A; Ramakrishnan V; Frank J
    Science; 2003 Apr; 300(5616):127-30. PubMed ID: 12677067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of translation termination mediated by an interaction of eukaryotic release factor 1 with a nascent peptidyl-tRNA.
    Janzen DM; Frolova L; Geballe AP
    Mol Cell Biol; 2002 Dec; 22(24):8562-70. PubMed ID: 12446775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.