These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 20932549)
1. Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas. Reis AT; Rodrigues SM; Davidson CM; Pereira E; Duarte AC Chemosphere; 2010 Dec; 81(11):1369-77. PubMed ID: 20932549 [TBL] [Abstract][Full Text] [Related]
2. Mercury fractionation in contaminated soils from the Idrija mercury mine region. Kocman D; Horvat M; Kotnik J J Environ Monit; 2004 Aug; 6(8):696-703. PubMed ID: 15292953 [TBL] [Abstract][Full Text] [Related]
3. Mercury availability by operationally defined fractionation in granulometric distributions of soils and mine wastes from an abandoned cinnabar mine. Fernández-Martínez R; Loredo J; Ordóñez A; Rucandio I Environ Sci Process Impacts; 2014 May; 16(5):1069-75. PubMed ID: 24664209 [TBL] [Abstract][Full Text] [Related]
4. Mercury speciation in highly contaminated soils from chlor-alkali plants using chemical extractions. Neculita CM; Zagury GJ; Deschênes L J Environ Qual; 2005; 34(1):255-62. PubMed ID: 15647556 [TBL] [Abstract][Full Text] [Related]
5. Mercury emission and dispersion models from soils contaminated by cinnabar mining and metallurgy. Llanos W; Kocman D; Higueras P; Horvat M J Environ Monit; 2011 Dec; 13(12):3460-8. PubMed ID: 22037967 [TBL] [Abstract][Full Text] [Related]
6. Speciation, distribution, and transport of mercury in contaminated soils from Descoberto, Minas Gerais, Brazil. Durão Júnior WA; Palmieri HE; Trindade MC; de Aquino Branco OE; Filho CA; Fleming PM; da Silva JB; Windmöller CC J Environ Monit; 2009 May; 11(5):1056-63. PubMed ID: 19436865 [TBL] [Abstract][Full Text] [Related]
7. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China. Horvat M; Nolde N; Fajon V; Jereb V; Logar M; Lojen S; Jacimovic R; Falnoga I; Liya Q; Faganeli J; Drobne D Sci Total Environ; 2003 Mar; 304(1-3):231-56. PubMed ID: 12663187 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils. Anawar HM; Garcia-Sanchez A; Santa Regina I Chemosphere; 2008 Feb; 70(8):1459-67. PubMed ID: 17936872 [TBL] [Abstract][Full Text] [Related]
9. Mercury speciation analyses in HgCl(2)-contaminated soils and groundwater--implications for risk assessment and remediation strategies. Bollen A; Wenke A; Biester H Water Res; 2008 Jan; 42(1-2):91-100. PubMed ID: 17675134 [TBL] [Abstract][Full Text] [Related]
10. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland. Krysiak A; Karczewska A Sci Total Environ; 2007 Jul; 379(2-3):190-200. PubMed ID: 17187844 [TBL] [Abstract][Full Text] [Related]
11. Quantification and fractionation of mercury in soils from the Chatian mercury mining deposit, southwestern China. Li Y; Yang L; Ji Y; Sun H; Wang W Environ Geochem Health; 2009 Dec; 31(6):617-28. PubMed ID: 18855104 [TBL] [Abstract][Full Text] [Related]
12. Total mercury, organic mercury and mercury fractionation in soil profiles from the Almadén mercury mine area. Fernández-Martínez R; Rucandio I Environ Sci Process Impacts; 2014 Feb; 16(2):333-40. PubMed ID: 24441501 [TBL] [Abstract][Full Text] [Related]
13. Physicochemical characterization and mercury speciation of particle-size soil fractions from an abandoned mining area in Mieres, Asturias (Spain). Fernández-Martínez R; Loredo J; Ordóñez A; Rucandio MI Environ Pollut; 2006 Jul; 142(2):217-26. PubMed ID: 16360254 [TBL] [Abstract][Full Text] [Related]
14. Impacts of mercury contaminated mining waste on soil quality, crops, bivalves, and fish in the Naboc River area, Mindanao, Philippines. Appleton JD; Weeks JM; Calvez JP; Beinhoff C Sci Total Environ; 2006 Feb; 354(2-3):198-211. PubMed ID: 16398996 [TBL] [Abstract][Full Text] [Related]
15. Binding of mercury in soils and attic dust in the Idrija mercury mine area (Slovenia). Gosar M; Sajn R; Biester H Sci Total Environ; 2006 Oct; 369(1-3):150-62. PubMed ID: 16764912 [TBL] [Abstract][Full Text] [Related]
16. Impact of mercury atmospheric deposition on soils and streams in a mountainous catchment (Vosges, France) polluted by chlor-alkali industrial activity: the important trapping role of the organic matter. Hissler C; Probst JL Sci Total Environ; 2006 May; 361(1-3):163-78. PubMed ID: 16168464 [TBL] [Abstract][Full Text] [Related]
17. Speciation and quantification of mercury in Oxisol, Ultisol, and Spodosol from Amazon (Manaus, Brazil). do Valle CM; Santana GP; Augusti R; Egreja Filho FB; Windmöller CC Chemosphere; 2005 Feb; 58(6):779-92. PubMed ID: 15621191 [TBL] [Abstract][Full Text] [Related]
18. Influence of ore processing activity on Hg, As and Sb contamination and fractionation in soils in a former mining site of Monte Amiata ore district (Italy). Protano G; Nannoni F Chemosphere; 2018 May; 199():320-330. PubMed ID: 29448200 [TBL] [Abstract][Full Text] [Related]
19. Distribution and mobility of mercury in soils of a gold mining region, Cuyuni river basin, Venezuela. Santos-Francés F; García-Sánchez A; Alonso-Rojo P; Contreras F; Adams M J Environ Manage; 2011 Apr; 92(4):1268-76. PubMed ID: 21215510 [TBL] [Abstract][Full Text] [Related]
20. Total mercury concentrations in an industrialized catchment, the Thur River basin (north-eastern France): geochemical background level and contamination factors. Rémy S; Prudent P; Hissler C; Probst JL; Krempp G Chemosphere; 2003 Jul; 52(3):635-44. PubMed ID: 12738301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]