These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 20932843)
1. Interactions of two insect pathogens, Paranosema locustae (Protista: Microsporidia) and Metarhizium acridum (Fungi: Hypocreales), during a mixed infection of Locusta migratoria (Insecta: Orthoptera) nymphs. Tokarev YS; Levchenko MV; Naumov AM; Senderskiy IV; Lednev GR J Invertebr Pathol; 2011 Feb; 106(2):336-8. PubMed ID: 20932843 [TBL] [Abstract][Full Text] [Related]
2. Interaction between Paranosema locustae and Metarhizium anisopliae var. acridum, two pathogens of the desert locust, Schistocerca gregaria under laboratory conditions. Tounou AK; Kooyman C; Douro-Kpindou OK; Poehling HM J Invertebr Pathol; 2008 Mar; 97(3):203-10. PubMed ID: 18005982 [TBL] [Abstract][Full Text] [Related]
3. The mechanism for microsporidian parasite suppression of the hindgut bacteria of the migratory locust Locusta migratoria manilensis. Tan SQ; Zhang KQ; Chen HX; Ge Y; Ji R; Shi WP Sci Rep; 2015 Nov; 5():17365. PubMed ID: 26612678 [TBL] [Abstract][Full Text] [Related]
4. New case of long-term persistence of Paranosema locustae (Microsporidia) in melanopline grasshoppers (Orthoptera: Acrididae: Melanoplinae) of Argentina. Lange CE; Azzaro FG J Invertebr Pathol; 2008 Nov; 99(3):357-9. PubMed ID: 18814843 [TBL] [Abstract][Full Text] [Related]
5. Microsporidia-insect host interactions: teratoid sporogony at the sites of host tissue melanization. Tokarev YS; Sokolova YY; Entzeroth R J Invertebr Pathol; 2007 Jan; 94(1):70-3. PubMed ID: 17005193 [TBL] [Abstract][Full Text] [Related]
6. Construction and analysis of a normalized cDNA library from Metarhizium anisopliae var. acridum germinating and differentiating on Locusta migratoria wings. He M; Xia Y FEMS Microbiol Lett; 2009 Feb; 291(1):127-35. PubMed ID: 19076228 [TBL] [Abstract][Full Text] [Related]
7. Effects of a combined infection with Paranosema locustae and Beauveria bassiana on Locusta migratoria and its gut microflora. Tan SQ; Yin Y; Cao KL; Zhao XX; Wang XY; Zhang YX; Shi WP Insect Sci; 2021 Apr; 28(2):347-354. PubMed ID: 32167220 [TBL] [Abstract][Full Text] [Related]
8. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. Zhang W; Chen J; Keyhani NO; Zhang Z; Li S; Xia Y BMC Genomics; 2015 Oct; 16():867. PubMed ID: 26503342 [TBL] [Abstract][Full Text] [Related]
9. Immune responses of locusts to challenge with the pathogenic fungus Metarhizium or high doses of laminarin. Mullen LM; Goldsworthy GJ J Insect Physiol; 2006 Apr; 52(4):389-98. PubMed ID: 16413931 [TBL] [Abstract][Full Text] [Related]
10. Molecular and biochemical changes in Locusta migratoria (Orthoptera: Acrididae) infected with Paranosema locustae. Zhang H; Yang K; Wang H; Liu H; Shi W; Kabak I; Ji R; Hu H J Insect Sci; 2023 Sep; 23(5):. PubMed ID: 37656823 [TBL] [Abstract][Full Text] [Related]
11. Integration of an insecticidal scorpion toxin (BjαIT) gene into Metarhizium acridum enhances fungal virulence towards Locusta migratoria manilensis. Peng G; Xia Y Pest Manag Sci; 2015 Jan; 71(1):58-64. PubMed ID: 25488590 [TBL] [Abstract][Full Text] [Related]
12. Horizontal transmission of Paranosema locustae (Microsporidia) in grasshopper populations via predatory natural enemies. Wang-Peng S; Zheng X; Jia WT; Li AM; Camara I; Chen HX; Tan SQ; Liu YQ; Ji R Pest Manag Sci; 2018 Nov; 74(11):2589-2593. PubMed ID: 29688597 [TBL] [Abstract][Full Text] [Related]
13. Increased virulence in the locust-specific fungal pathogen Metarhizium acridum expressing dsRNAs targeting the host F Hu J; Xia Y Pest Manag Sci; 2019 Jan; 75(1):180-186. PubMed ID: 29797423 [TBL] [Abstract][Full Text] [Related]
14. Suppression of yolk formation, oviposition and egg quality of locust ( Hu YW; Wang SH; Tang Y; Xie GQ; Ding YJ; Xu QY; Tang B; Zhang L; Wang SG Front Immunol; 2022; 13():848267. PubMed ID: 35935997 [No Abstract] [Full Text] [Related]
15. The immune response of Locusta migratoria manilensis at different times of infection with Paranosema locustae. Liu H; Wei X; Ye X; Zhang H; Yang K; Shi W; Zhang J; Jashenko R; Ji R; Hu H Arch Insect Biochem Physiol; 2023 Dec; 114(4):e22055. PubMed ID: 37786392 [TBL] [Abstract][Full Text] [Related]
16. Expression of scorpion toxin LqhIT2 increases the virulence of Metarhizium acridum towards Locusta migratoria manilensis. Peng G; Xia Y J Ind Microbiol Biotechnol; 2014 Nov; 41(11):1659-66. PubMed ID: 25168679 [TBL] [Abstract][Full Text] [Related]
17. The acid trehalase, ATM1, contributes to the in vivo growth and virulence of the entomopathogenic fungus, Metarhizium acridum. Jin K; Peng G; Liu Y; Xia Y Fungal Genet Biol; 2015 Apr; 77():61-7. PubMed ID: 25865794 [TBL] [Abstract][Full Text] [Related]
18. Mapmi gene contributes to stress tolerance and virulence of the entomopathogenic fungus, Metarhizium acridum. Cao Y; Li M; Xia Y J Invertebr Pathol; 2011 Sep; 108(1):7-12. PubMed ID: 21683706 [TBL] [Abstract][Full Text] [Related]
19. [Analysis of expression of vesicular transport genes in avesicular cells of the microsporidium Paranosema (Antonospora) locustae]. Dolgikh VV; Senderskiĭ IV; Pavlova OA; Beznusenko GV Tsitologiia; 2010; 52(1):5-11. PubMed ID: 20302012 [TBL] [Abstract][Full Text] [Related]
20. Large scale expressed sequence tag (EST) analysis of Metarhizium acridum infecting Locusta migratoria reveals multiple strategies for fungal adaptation to the host cuticle. He M; Hu J; Xia Y Curr Genet; 2012 Dec; 58(5-6):265-79. PubMed ID: 23052419 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]