These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 20932973)

  • 1. A novel unstructured scaffold based on 4EBP1 enables the functional display of a wide range of bioactive peptides.
    See HY; Lane DP
    J Mol Biol; 2010 Dec; 404(5):819-31. PubMed ID: 20932973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational design and biophysical characterization of thioredoxin-based aptamers: insights into peptide grafting.
    Brown CJ; Dastidar SG; See HY; Coomber DW; Ortiz-Lombardía M; Verma C; Lane DP
    J Mol Biol; 2010 Jan; 395(4):871-83. PubMed ID: 19895821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand-regulated peptide aptamers.
    Miller RA
    Methods Mol Biol; 2009; 535():315-31. PubMed ID: 19377988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of Peptide aptamers to target protein function.
    Lopez-Ochoa L; Nash TE; Ramirez-Prado J; Hanley-Bowdoin L
    Methods Mol Biol; 2009; 535():333-60. PubMed ID: 19377987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-function studies of an engineered scaffold protein derived from Stefin A. II: Development and applications of the SQT variant.
    Stadler LK; Hoffmann T; Tomlinson DC; Song Q; Lee T; Busby M; Nyathi Y; Gendra E; Tiede C; Flanagan K; Cockell SJ; Wipat A; Harwood C; Wagner SD; Knowles MA; Davis JJ; Keegan N; Ferrigno PK
    Protein Eng Des Sel; 2011 Sep; 24(9):751-63. PubMed ID: 21616931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organelle-targeted delivery of biological macromolecules using the protein transduction domain: potential applications for Peptide aptamer delivery into the nucleus.
    Yoshikawa T; Sugita T; Mukai Y; Yamanada N; Nagano K; Nabeshi H; Yoshioka Y; Nakagawa S; Abe Y; Kamada H; Tsunoda S; Tsutsumi Y
    J Mol Biol; 2008 Jul; 380(5):777-82. PubMed ID: 18571668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monomeric recombinant peptide aptamers are required for efficient intracellular uptake and target inhibition.
    Borghouts C; Kunz C; Delis N; Groner B
    Mol Cancer Res; 2008 Feb; 6(2):267-81. PubMed ID: 18314488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide aptamers as guides for small-molecule drug discovery.
    Baines IC; Colas P
    Drug Discov Today; 2006 Apr; 11(7-8):334-41. PubMed ID: 16580975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide aptamers expressed in the secretory pathway interfere with cellular PrPSc formation.
    Gilch S; Kehler C; Schätzl HM
    J Mol Biol; 2007 Aug; 371(2):362-73. PubMed ID: 17574575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide aptamers in label-free protein detection: 2. Chemical optimization and detection of distinct protein isoforms.
    Davis JJ; Tkac J; Humphreys R; Buxton AT; Lee TA; Ko Ferrigno P
    Anal Chem; 2009 May; 81(9):3314-20. PubMed ID: 19320493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and validation of a neutral protein scaffold for the presentation of peptide aptamers.
    Woodman R; Yeh JT; Laurenson S; Ko Ferrigno P
    J Mol Biol; 2005 Oct; 352(5):1118-33. PubMed ID: 16139842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of p53 by scaffold-stabilised expression of Mdm2-binding peptides: visualisation of reporter gene induction at the single-cell level.
    Karlsson GB; Jensen A; Stevenson LF; Woods YL; Lane DP; Sørensen MS
    Br J Cancer; 2004 Oct; 91(8):1488-94. PubMed ID: 15381928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of novel mdm2 binding peptides by phage display.
    Böttger V; Böttger A; Howard SF; Picksley SM; Chène P; Garcia-Echeverria C; Hochkeppel HK; Lane DP
    Oncogene; 1996 Nov; 13(10):2141-7. PubMed ID: 8950981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional display of bioactive peptides on the vGFP scaffold.
    Chee SMQ; Wongsantichon J; Yi LS; Sana B; Frosi Y; Robinson RC; Ghadessy FJ
    Sci Rep; 2021 May; 11(1):10127. PubMed ID: 33980885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection of aptamers for signal transduction proteins by capillary electrophoresis.
    Tok J; Lai J; Leung T; Li SF
    Electrophoresis; 2010 Jun; 31(12):2055-62. PubMed ID: 20564698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed-element capture agents: a simple strategy for the construction of synthetic, high-affinity protein capture ligands.
    Bachhawat-Sikder K; Kodadek T
    J Am Chem Soc; 2003 Aug; 125(32):9550-1. PubMed ID: 12903996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro selection of peptide aptamers with affinity to single-wall carbon nanotubes using a ribosome display.
    Li Z; Uzawa T; Tanaka T; Hida A; Ishibashi K; Katakura H; Kobatake E; Ito Y
    Biotechnol Lett; 2013 Jan; 35(1):39-45. PubMed ID: 22986537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of disulfide-rich peptide aptamers using cDNA display.
    Mochizuki Y; Nemoto N
    Methods Mol Biol; 2012; 805():237-50. PubMed ID: 22094809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA aptamers to mammalian initiation factor 4G inhibit cap-dependent translation by blocking the formation of initiation factor complexes.
    Miyakawa S; Oguro A; Ohtsu T; Imataka H; Sonenberg N; Nakamura Y
    RNA; 2006 Oct; 12(10):1825-34. PubMed ID: 16940549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide aptamers for small molecule drug discovery.
    Bardou C; Borie C; Bickle M; Rudkin BB; Colas P
    Methods Mol Biol; 2009; 535():373-88. PubMed ID: 19377984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.