These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 20933110)

  • 1. Expression of anti-sclerotinia scFv in transgenic Brassica napus enhances tolerance against stem rot.
    Yajima W; Verma SS; Shah S; Rahman MH; Liang Y; Kav NN
    N Biotechnol; 2010 Dec; 27(6):816-21. PubMed ID: 20933110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape.
    Wang Z; Mao H; Dong C; Ji R; Cai L; Fu H; Liu S
    Mol Plant Microbe Interact; 2009 Mar; 22(3):235-44. PubMed ID: 19245318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of Sclerotinia sclerotiorum using a monomeric and dimeric single-chain fragment variable (scFv) antibody.
    Yajima W; Rahman MH; Das D; Suresh MR; Kav NN
    J Agric Food Chem; 2008 Oct; 56(20):9455-63. PubMed ID: 18800799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus.
    Wu J; Zhao Q; Yang Q; Liu H; Li Q; Yi X; Cheng Y; Guo L; Fan C; Zhou Y
    Sci Rep; 2016 Jan; 6():19007. PubMed ID: 26743436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq.
    Joshi RK; Megha S; Rahman MH; Basu U; Kav NN
    Gene; 2016 Sep; 590(1):57-67. PubMed ID: 27265030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum.
    Ziaei M; Motallebi M; Zamani MR; Panjeh NZ
    Biotechnol Lett; 2016 Jun; 38(6):1021-32. PubMed ID: 26875090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum.
    Cao JY; Xu YP; Cai XZ
    J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of QTLs for resistance to sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus.
    Wu J; Cai G; Tu J; Li L; Liu S; Luo X; Zhou L; Fan C; Zhou Y
    PLoS One; 2013; 8(7):e67740. PubMed ID: 23844081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced resistance to Sclerotinia sclerotiorum in Brassica napus by co-expression of defensin and chimeric chitinase genes.
    Zarinpanjeh N; Motallebi M; Zamani MR; Ziaei M
    J Appl Genet; 2016 Nov; 57(4):417-425. PubMed ID: 26862081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cysteine-rich antimicrobial peptide from Pinus monticola (PmAMP1) confers resistance to multiple fungal pathogens in canola (Brassica napus).
    Verma SS; Yajima WR; Rahman MH; Shah S; Liu JJ; Ekramoddoullah AK; Kav NN
    Plant Mol Biol; 2012 May; 79(1-2):61-74. PubMed ID: 22351159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome changes in leaves of Brassica napus L. as a result of Sclerotinia sclerotiorum challenge.
    Liang Y; Srivastava S; Rahman MH; Strelkov SE; Kav NN
    J Agric Food Chem; 2008 Mar; 56(6):1963-76. PubMed ID: 18290614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level.
    Cao JY; Xu YP; Zhao L; Li SS; Cai XZ
    Plant Mol Biol; 2016 Sep; 92(1-2):39-55. PubMed ID: 27325118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decreased incidence of disease caused by Sclerotinia sclerotiorum and improved plant vigor of oilseed rape with Bacillus subtilis Tu-100.
    Hu X; Roberts DP; Jiang M; Zhang Y
    Appl Microbiol Biotechnol; 2005 Oct; 68(6):802-7. PubMed ID: 15744488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-transformation of canola by chimeric chitinase and tlp genes towards improving resistance to Sclerotinia sclerotiorum.
    Aghazadeh R; Zamani M; Motallebi M; Moradyar M; Moghadassi Jahromi Z
    World J Microbiol Biotechnol; 2016 Sep; 32(9):144. PubMed ID: 27430511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea.
    Zhang Y; Huai D; Yang Q; Cheng Y; Ma M; Kliebenstein DJ; Zhou Y
    PLoS One; 2015; 10(10):e0140491. PubMed ID: 26465156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Knockout of the lignin pathway gene BnF5H decreases the S/G lignin compositional ratio and improves Sclerotinia sclerotiorum resistance in Brassica napus.
    Cao Y; Yan X; Ran S; Ralph J; Smith RA; Chen X; Qu C; Li J; Liu L
    Plant Cell Environ; 2022 Jan; 45(1):248-261. PubMed ID: 34697825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Members of the germin-like protein family in Brassica napus are candidates for the initiation of an oxidative burst that impedes pathogenesis of Sclerotinia sclerotiorum.
    Rietz S; Bernsdorff FE; Cai D
    J Exp Bot; 2012 Sep; 63(15):5507-19. PubMed ID: 22888126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation of LTP gene into Brassica napus to enhance its resistance to Sclerotinia sclerotiorum.
    Fan Y; Du K; Gao Y; Kong Y; Chu C; Sokolov V; Wang Y
    Genetika; 2013 Apr; 49(4):439-47. PubMed ID: 23866620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MYB43 in Oilseed Rape (
    Jiang J; Liao X; Jin X; Tan L; Lu Q; Yuan C; Xue Y; Yin N; Lin N; Chai Y
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32455973
    [No Abstract]   [Full Text] [Related]  

  • 20. Quantitative Inheritance of Sclerotinia Stem Rot Resistance in
    Khan MA; Cowling W; Banga SS; You MP; Tyagi V; Bharti B; Barbetti MJ
    Plant Dis; 2022 Jan; 106(1):127-136. PubMed ID: 34340556
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.