These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts. Terblanche JS; Clusella-Trullas S; Deere JA; Chown SL J Insect Physiol; 2008 Jan; 54(1):114-27. PubMed ID: 17889900 [TBL] [Abstract][Full Text] [Related]
3. Effects of temperature and modified atmospheres on diapausing 5th instar codling moth metabolism. Neven LG; Lehrman NJ; Hansen LD J Therm Biol; 2014 May; 42():9-14. PubMed ID: 24802143 [TBL] [Abstract][Full Text] [Related]
4. Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: II. AFLP analysis reflects human-aided local adaptation of a global pest species. Thaler R; Brandstätter A; Meraner A; Chabicovski M; Parson W; Zelger R; Dalla Via J; Dallinger R Mol Phylogenet Evol; 2008 Sep; 48(3):838-49. PubMed ID: 18619861 [TBL] [Abstract][Full Text] [Related]
5. Relationship between behavior and physiology in an invasive pest species: oviposition site selection and temperature-dependent development of the oriental fruit moth (Lepidoptera: Tortricidae). Notter-Hausmann C; Dorn S Environ Entomol; 2010 Apr; 39(2):561-9. PubMed ID: 20388288 [TBL] [Abstract][Full Text] [Related]
6. Reduced egg viability in codling moth Cydia pomonella (L.) (Lepidoptera: Tortricidae) following adult exposure to novaluron. Gökçe A; Kim SH; Wise JC; Whalon ME Pest Manag Sci; 2009 Mar; 65(3):283-7. PubMed ID: 19115228 [TBL] [Abstract][Full Text] [Related]
7. Arrhenius relationships from the molecule and cell to the clinic. Dewey WC Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695 [TBL] [Abstract][Full Text] [Related]
8. The effects of acclimation and rates of temperature change on critical thermal limits in Tenebrio molitor (Tenebrionidae) and Cyrtobagous salviniae (Curculionidae). Allen JL; Clusella-Trullas S; Chown SL J Insect Physiol; 2012 May; 58(5):669-78. PubMed ID: 22342317 [TBL] [Abstract][Full Text] [Related]
9. Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: I. Ancient clade splitting revealed by mitochondrial haplotype markers. Meraner A; Brandstätter A; Thaler R; Aray B; Unterlechner M; Niederstätter H; Parson W; Zelger R; Dalla Via J; Dallinger R Mol Phylogenet Evol; 2008 Sep; 48(3):825-37. PubMed ID: 18620870 [TBL] [Abstract][Full Text] [Related]
10. Comparative assessment of the thermal tolerance of spotted stemborer, Chilo partellus (Lepidoptera: Crambidae) and its larval parasitoid, Cotesia sesamiae (Hymenoptera: Braconidae). Mutamiswa R; Chidawanyika F; Nyamukondiwa C Insect Sci; 2018 Oct; 25(5):847-860. PubMed ID: 28374539 [TBL] [Abstract][Full Text] [Related]
11. Reduced mobility but high survival: thermal tolerance and locomotor response of the specialist herbivore, Pareuchaetes insulata (Walker) (Lepidoptera: Erebidae), to low temperatures. Uyi OO; Zachariades C; Marais E; Hill MP Bull Entomol Res; 2017 Aug; 107(4):448-457. PubMed ID: 27974070 [TBL] [Abstract][Full Text] [Related]
12. Acclimation effects on thermal tolerances of springtails from sub-Antarctic Marion Island: indigenous and invasive species. Slabber S; Worland MR; Leinaas HP; Chown SL J Insect Physiol; 2007 Feb; 53(2):113-25. PubMed ID: 17222862 [TBL] [Abstract][Full Text] [Related]
13. Costs and benefits of thermal acclimation for codling moth, Cydia pomonella (Lepidoptera: Tortricidae): implications for pest control and the sterile insect release programme. Chidawanyika F; Terblanche JS Evol Appl; 2011 Jul; 4(4):534-44. PubMed ID: 25568003 [TBL] [Abstract][Full Text] [Related]
14. Control of Cydia pomonella L. and Cydia molesta (Busck) (Lepidoptera Tortricidae) in pome-fruit orchards with Ecodian sex pheromone dispensers. Anfora G; Baldessari M; Maines R; Trona F; Reggiori F; Angeli G Commun Agric Appl Biol Sci; 2007; 72(3):535-41. PubMed ID: 18399485 [TBL] [Abstract][Full Text] [Related]
15. Physiological and molecular mechanisms associated with cross tolerance between hypoxia and low temperature in Thaumatotibia leucotreta. Boardman L; Sørensen JG; Terblanche JS J Insect Physiol; 2015 Nov; 82():75-84. PubMed ID: 26376454 [TBL] [Abstract][Full Text] [Related]
16. Heat-stress proteins and thermal resistance in rat mammary tumor cells. Tomasovic SP; Steck PA; Heitzman D Radiat Res; 1983 Aug; 95(2):399-413. PubMed ID: 6611857 [TBL] [Abstract][Full Text] [Related]
17. Low temperature acclimated populations of the grain aphid Sitobion avenae retain ability to rapidly cold harden with enhanced fitness. Powell SJ; Bale JS J Exp Biol; 2005 Jul; 208(Pt 13):2615-20. PubMed ID: 15961747 [TBL] [Abstract][Full Text] [Related]
18. Responses of the bed bug, Cimex lectularius, to temperature extremes and dehydration: levels of tolerance, rapid cold hardening and expression of heat shock proteins. Benoit JB; Lopez-Martinez G; Teets NM; Phillips SA; Denlinger DL Med Vet Entomol; 2009 Dec; 23(4):418-25. PubMed ID: 19941608 [TBL] [Abstract][Full Text] [Related]
19. Mobility of mass-reared diapaused and nondiapaused Cydia pomonella (Lepidoptera: Tortricidae): effect of different constant temperatures and lengths of cold storage. Bloem S; Carpenter JE; Dorn S J Econ Entomol; 2006 Jun; 99(3):707-13. PubMed ID: 16813302 [TBL] [Abstract][Full Text] [Related]
20. Relationship between rapid cold-hardening and cold acclimation in the eggs of the yellow-spotted longicorn beetle, Psacothea hilaris. Shintani Y; Ishikawa Y J Insect Physiol; 2007 Oct; 53(10):1055-62. PubMed ID: 17628587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]