BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 20933603)

  • 1. Physical interactions between tricarboxylic acid cycle enzymes in Bacillus subtilis: evidence for a metabolon.
    Meyer FM; Gerwig J; Hammer E; Herzberg C; Commichau FM; Völker U; Stülke J
    Metab Eng; 2011 Jan; 13(1):18-27. PubMed ID: 20933603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex formation between malate dehydrogenase and isocitrate dehydrogenase from Bacillus subtilis is regulated by tricarboxylic acid cycle metabolites.
    Bartholomae M; Meyer FM; Commichau FM; Burkovski A; Hillen W; Seidel G
    FEBS J; 2014 Feb; 281(4):1132-43. PubMed ID: 24325460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of enzymes of the tricarboxylic acid cycle in Bacillus subtilis and Escherichia coli: a comparative study.
    Jung T; Mack M
    FEMS Microbiol Lett; 2018 Apr; 365(8):. PubMed ID: 29546354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The phosphoenolpyruvate carboxykinase also catalyzes C3 carboxylation at the interface of glycolysis and the TCA cycle of Bacillus subtilis.
    Zamboni N; Maaheimo H; Szyperski T; Hohmann HP; Sauer U
    Metab Eng; 2004 Oct; 6(4):277-84. PubMed ID: 15491857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of Bacillus subtilis on citrate and isocitrate is supported by the Mg2+-citrate transporter CitM.
    Warner JB; Lolkema JS
    Microbiology (Reading); 2002 Nov; 148(Pt 11):3405-3412. PubMed ID: 12427932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Bacillus subtilis YufLM two-component system regulates the expression of the malate transporters MaeN (YufR) and YflS, and is essential for utilization of malate in minimal medium.
    Tanaka K; Kobayashi K; Ogasawara N
    Microbiology (Reading); 2003 Sep; 149(Pt 9):2317-2329. PubMed ID: 12949159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetate metabolism and its regulation in Corynebacterium glutamicum.
    Gerstmeir R; Wendisch VF; Schnicke S; Ruan H; Farwick M; Reinscheid D; Eikmanns BJ
    J Biotechnol; 2003 Sep; 104(1-3):99-122. PubMed ID: 12948633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Malate metabolism in Bacillus subtilis: distinct roles for three classes of malate-oxidizing enzymes.
    Meyer FM; Stülke J
    FEMS Microbiol Lett; 2013 Feb; 339(1):17-22. PubMed ID: 23136871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of physical interactions between consecutive enzymes of the citric acid cycle and of the aspartate-malate shuttle. A study involving fumarase, malate dehydrogenase, citrate synthesis and aspartate aminotransferase.
    Beeckmans S; Kanarek L
    Eur J Biochem; 1981 Jul; 117(3):527-35. PubMed ID: 7285903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme-enzyme interactions as modulators of the metabolic flux through the citric acid cycle.
    Beeckmans S; Kanarek L
    Biochem Soc Symp; 1987; 54():163-172. PubMed ID: 3332992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a multienzyme complex of the tricarboxylic acid cycle enzymes containing citrate synthase isoenzymes from Pseudomonas aeruginosa.
    Mitchell CG
    Biochem J; 1996 Feb; 313 ( Pt 3)(Pt 3):769-74. PubMed ID: 8611153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organization of citric acid cycle enzymes into a multienzyme cluster.
    Barnes SJ; Weitzman PD
    FEBS Lett; 1986 Jun; 201(2):267-70. PubMed ID: 3086126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of different nutritional conditions on the synthesis of tricarboxylic acid cycle enzymes.
    Hanson RS; Cox DP
    J Bacteriol; 1967 Jun; 93(6):1777-87. PubMed ID: 4960893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brownian dynamic study of an enzyme metabolon in the TCA cycle: Substrate kinetics and channeling.
    Huang YM; Huber GA; Wang N; Minteer SD; McCammon JA
    Protein Sci; 2018 Feb; 27(2):463-471. PubMed ID: 29094409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-consecutive enzyme interactions within TCA cycle supramolecular assembly regulate carbon-nitrogen metabolism.
    Jasinska W; Dindo M; Cordoba SMC; Serohijos AWR; Laurino P; Brotman Y; Bershtein S
    Nat Commun; 2024 Jun; 15(1):5285. PubMed ID: 38902266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clustering of sequential enzymes in the glycolytic pathway and the citric acid cycle.
    Beeckmans S; Van Driessche E; Kanarek L
    J Cell Biochem; 1990 Aug; 43(4):297-306. PubMed ID: 2398101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The visualization by affinity electrophoresis of a specific association between the consecutive citric acid cycle enzymes fumarase and malate dehydrogenase.
    Beeckmans S; Van Driessche E; Kanarek L
    Eur J Biochem; 1989 Aug; 183(2):449-54. PubMed ID: 2759092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Evidence for Metabolon Formation and Substrate Channeling in Recombinant TCA Cycle Enzymes.
    Bulutoglu B; Garcia KE; Wu F; Minteer SD; Banta S
    ACS Chem Biol; 2016 Oct; 11(10):2847-2853. PubMed ID: 27556423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of tricarboxylic acid cycle mutants of Bacillus subtilis.
    Carls RA; Hanson RS
    J Bacteriol; 1971 Jun; 106(3):848-55. PubMed ID: 4997541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible transdominant inhibition of a metabolic pathway. In vivo evidence of interaction between two sequential tricarboxylic acid cycle enzymes in yeast.
    Vélot C; Srere PA
    J Biol Chem; 2000 Apr; 275(17):12926-33. PubMed ID: 10777592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.