These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 20933603)

  • 21. [Central metabolism in Acinetobacter sp. grown on ethanol].
    Pirog TP; Kuz'minskaia IuV
    Mikrobiologiia; 2003; 72(4):459-65. PubMed ID: 14526533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Is the TCA cycle malate dehydrogenase-citrate synthase metabolon an illusion?
    Omini J; Dele-Osibanjo T; Kim H; Zhang J; Obata T
    Essays Biochem; 2024 Jul; ():. PubMed ID: 38958532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Model of a quinary structure between Krebs TCA cycle enzymes: a model for the metabolon.
    Vélot C; Mixon MB; Teige M; Srere PA
    Biochemistry; 1997 Nov; 36(47):14271-6. PubMed ID: 9400365
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Association of the malate dehydrogenase-citrate synthase metabolon is modulated by intermediates of the Krebs tricarboxylic acid cycle.
    Omini J; Wojciechowska I; Skirycz A; Moriyama H; Obata T
    Sci Rep; 2021 Sep; 11(1):18770. PubMed ID: 34548590
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sirtuin Lipoamidase Activity Is Conserved in Bacteria as a Regulator of Metabolic Enzyme Complexes.
    Rowland EA; Greco TM; Snowden CK; McCabe AL; Silhavy TJ; Cristea IM
    mBio; 2017 Sep; 8(5):. PubMed ID: 28900027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Loss of malic enzymes leads to metabolic imbalance and altered levels of trehalose and putrescine in the bacterium Sinorhizobium meliloti.
    Zhang Y; Smallbone LA; diCenzo GC; Morton R; Finan TM
    BMC Microbiol; 2016 Jul; 16(1):163. PubMed ID: 27456220
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Global transcription analysis of Krebs tricarboxylic acid cycle mutants reveals an alternating pattern of gene expression and effects on hypoxic and oxidative genes.
    McCammon MT; Epstein CB; Przybyla-Zawislak B; McAlister-Henn L; Butow RA
    Mol Biol Cell; 2003 Mar; 14(3):958-72. PubMed ID: 12631716
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Supramolecular organization of enzymes of the tricarboxylic acid cycle].
    Liubarev AE; Kurganov BI
    Mol Biol (Mosk); 1987; 21(5):1286-96. PubMed ID: 3683373
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes.
    Servant P; Le Coq D; Aymerich S
    Mol Microbiol; 2005 Mar; 55(5):1435-51. PubMed ID: 15720552
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial dysfunctions in cancer: genetic defects and oncogenic signaling impinging on TCA cycle activity.
    Desideri E; Vegliante R; Ciriolo MR
    Cancer Lett; 2015 Jan; 356(2 Pt A):217-23. PubMed ID: 24614286
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of lactate dehydrogenase synthesis in Bacillus subtilis.
    Yashphe J; Hoch JA; Kaplan NO
    Biochim Biophys Acta; 1978 Nov; 544(1):1-7. PubMed ID: 102366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diffusion of tricarboxylic acid cycle enzymes in the mitochondrial matrix in vivo. Evidence for restricted mobility of a multienzyme complex.
    Haggie PM; Verkman AS
    J Biol Chem; 2002 Oct; 277(43):40782-8. PubMed ID: 12198136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increased flux through the TCA cycle enhances bacitracin production by Bacillus licheniformis DW2.
    Liu Z; Yu W; Nomura CT; Li J; Chen S; Yang Y; Wang Q
    Appl Microbiol Biotechnol; 2018 Aug; 102(16):6935-6946. PubMed ID: 29911294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Knockout of the high-coupling cytochrome aa3 oxidase reduces TCA cycle fluxes in Bacillus subtilis.
    Zamboni N; Sauer U
    FEMS Microbiol Lett; 2003 Sep; 226(1):121-6. PubMed ID: 13129617
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Krebs cycle metabolon: structural evidence of substrate channeling revealed by cross-linking and mass spectrometry.
    Wu F; Minteer S
    Angew Chem Int Ed Engl; 2015 Feb; 54(6):1851-4. PubMed ID: 25537779
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The CymR regulator in complex with the enzyme CysK controls cysteine metabolism in Bacillus subtilis.
    Tanous C; Soutourina O; Raynal B; Hullo MF; Mervelet P; Gilles AM; Noirot P; Danchin A; England P; Martin-Verstraete I
    J Biol Chem; 2008 Dec; 283(51):35551-60. PubMed ID: 18974048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues.
    Araújo WL; Nunes-Nesi A; Nikoloski Z; Sweetlove LJ; Fernie AR
    Plant Cell Environ; 2012 Jan; 35(1):1-21. PubMed ID: 21477125
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Supramolecular organization of tricarboxylic acid cycle enzymes.
    Lyubarev AE; Kurganov BI
    Biosystems; 1989; 22(2):91-102. PubMed ID: 2720141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis.
    Dauner M; Bailey JE; Sauer U
    Biotechnol Bioeng; 2001 Sep; 76(2):144-56. PubMed ID: 11505384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of the production of exo-beta-N-acetylglucosaminidase by Bacillus subtilis B.
    Brewer SJ; Berkeley RC
    Biochem J; 1973 May; 134(1):271-81. PubMed ID: 4198760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.