These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 20934198)
1. Cork industry wastewater partition by ultra/nanofiltration: a biodegradation and valorisation study. Bernardo M; Santos A; Cantinho P; Minhalma M Water Res; 2011 Jan; 45(2):904-12. PubMed ID: 20934198 [TBL] [Abstract][Full Text] [Related]
2. Effect of biological wastewater treatment on the molecular weight distribution of soluble organic compounds and on the reduction of BOD, COD and P in pulp and paper mill effluent. Leiviskä T; Nurmesniemi H; Pöykiö R; Rämö J; Kuokkanen T; Pellinen J Water Res; 2008 Aug; 42(14):3952-60. PubMed ID: 18707750 [TBL] [Abstract][Full Text] [Related]
3. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
4. Treatment of cork boiling wastewater using chemical oxidation and biodegradation. Dias-Machado M; Madeira LM; Nogales B; Nunes OC; Manaia CM Chemosphere; 2006 Jun; 64(3):455-61. PubMed ID: 16414098 [TBL] [Abstract][Full Text] [Related]
5. Integrating toxicity testing in the wastewater management of chemical storage terminals--a proposal based on a ten-year study. Rodrigues ES; Umbuzeiro Gde A J Hazard Mater; 2011 Feb; 186(2-3):1909-15. PubMed ID: 21237567 [TBL] [Abstract][Full Text] [Related]
6. Oxygen uptake rate measurements for evaluation of ozonation of municipal wastewater. Hagman M; Tykesson E; Hjorth B; Jansen LC Environ Technol; 2007 Feb; 28(2):177-83. PubMed ID: 17396412 [TBL] [Abstract][Full Text] [Related]
7. Treatment of dairy wastewater by two-stage membrane operation with ultrafiltration and nanofiltration. Gong YW; Zhang HX; Cheng XN Water Sci Technol; 2012; 65(5):915-9. PubMed ID: 22339027 [TBL] [Abstract][Full Text] [Related]
8. Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes. Nataraj SK; Hosamani KM; Aminabhavi TM Water Res; 2006 Jul; 40(12):2349-56. PubMed ID: 16757012 [TBL] [Abstract][Full Text] [Related]
9. Combined chemical and biological oxidation of penicillin formulation effluent. Alaton IA; Dogruel S; Baykal E; Gerone G J Environ Manage; 2004 Nov; 73(2):155-63. PubMed ID: 15380320 [TBL] [Abstract][Full Text] [Related]
10. Reuse of drinking water treatment sludge for olive oil mill wastewater treatment. Fragoso RA; Duarte EA Water Sci Technol; 2012; 66(4):887-94. PubMed ID: 22766882 [TBL] [Abstract][Full Text] [Related]
11. Biodegradability of tannin-containing wastewater from leather industry. He Q; Yao K; Sun D; Shi B Biodegradation; 2007 Aug; 18(4):465-72. PubMed ID: 17091346 [TBL] [Abstract][Full Text] [Related]
12. Decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process. Mohd Nasir N; Teo Ming T; Ahmadun FR; Sobri S Water Sci Technol; 2010; 62(1):42-7. PubMed ID: 20595752 [TBL] [Abstract][Full Text] [Related]
13. Ozone and membrane filtration based strategies for the treatment of cork processing wastewaters. Benítez FJ; Acero JL; Leal AI; Real FJ J Hazard Mater; 2008 Mar; 152(1):373-80. PubMed ID: 17693018 [TBL] [Abstract][Full Text] [Related]
14. Size distribution of wastewater COD fractions as an index for biodegradability. Dulekgurgen E; Doğruel S; Karahan O; Orhon D Water Res; 2006 Jan; 40(2):273-82. PubMed ID: 16376405 [TBL] [Abstract][Full Text] [Related]
15. Effect of Fenton's oxidation on the particle size distribution of organic carbon in olive mill wastewater. Dogruel S; Olmez-Hanci T; Kartal Z; Arslan-Alaton I; Orhon D Water Res; 2009 Sep; 43(16):3974-83. PubMed ID: 19577271 [TBL] [Abstract][Full Text] [Related]
16. Elucidation of the behavior of tannery wastewater under advanced oxidation conditions. Schrank SG; José HJ; Moreira RF; Schröder HF Chemosphere; 2004 Aug; 56(5):411-23. PubMed ID: 15212906 [TBL] [Abstract][Full Text] [Related]
17. Chemical and toxic evaluation of a biological treatment for olive-oil mill wastewater using commercial microbial formulations. Isidori M; Lavorgna M; Nardelli A; Parrella A Appl Microbiol Biotechnol; 2004 Jun; 64(5):735-9. PubMed ID: 15133644 [TBL] [Abstract][Full Text] [Related]
18. A comparative study among different photochemical oxidation processes to enhance the biodegradability of paper mill wastewater. Jamil TS; Ghaly MY; El-Seesy IE; Souaya ER; Nasr RA J Hazard Mater; 2011 Jan; 185(1):353-8. PubMed ID: 20926185 [TBL] [Abstract][Full Text] [Related]
19. Using ozone to reduce recalcitrant compounds and to enhance biodegradability of pulp and paper effluents. Bijan L; Mohseni M Water Sci Technol; 2004; 50(3):173-82. PubMed ID: 15461412 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the performance of UF membranes in olive mill wastewaters treatment. Cassano A; Conidi C; Drioli E Water Res; 2011 May; 45(10):3197-204. PubMed ID: 21489594 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]