These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 20934234)

  • 1. Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles.
    Sakulchaicharoen N; O'Carroll DM; Herrera JE
    J Contam Hydrol; 2010 Nov; 118(3-4):117-27. PubMed ID: 20934234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of PCE, TCE and 1,1,1-TCA by nanosized FePd bimetallic particles under various experimental conditions.
    Cho Y; Choi SI
    Chemosphere; 2010 Nov; 81(7):940-5. PubMed ID: 20723967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum.
    Tiraferri A; Chen KL; Sethi R; Elimelech M
    J Colloid Interface Sci; 2008 Aug; 324(1-2):71-9. PubMed ID: 18508073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead.
    Kim H; Hong HJ; Jung J; Kim SH; Yang JW
    J Hazard Mater; 2010 Apr; 176(1-3):1038-43. PubMed ID: 20042289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron.
    Dong H; Lo IM
    Water Res; 2013 Jan; 47(1):419-27. PubMed ID: 23123051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of potential positive effects of nZVI surface modification and concentration levels on TCE dechlorination in the presence of competing strong oxidants, using an experimental design.
    Kaifas D; Malleret L; Kumar N; Fétimi W; Claeys-Bruno M; Sergent M; Doumenq P
    Sci Total Environ; 2014 May; 481():335-42. PubMed ID: 24607397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron.
    Rajajayavel SR; Ghoshal S
    Water Res; 2015 Jul; 78():144-53. PubMed ID: 25935369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum.
    Comba S; Sethi R
    Water Res; 2009 Aug; 43(15):3717-26. PubMed ID: 19577785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe
    Phenrat T; Schoenfelder D; Kirschling TL; Tilton RD; Lowry GV
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7157-7169. PubMed ID: 26233743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media.
    Raychoudhury T; Naja G; Ghoshal S
    J Contam Hydrol; 2010 Nov; 118(3-4):143-51. PubMed ID: 20937540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dispersant-modified iron nanoparticles for mobility enhancement and TCE degradation: a comparison study.
    Peng YP; Chen TY; Wu CY; Chang YC; Chen KF
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34157-34166. PubMed ID: 30456616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials.
    Kirschling TL; Gregory KB; Minkley EG; Lowry GV; Tilton RD
    Environ Sci Technol; 2010 May; 44(9):3474-80. PubMed ID: 20350000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron.
    Chen J; Xiu Z; Lowry GV; Alvarez PJ
    Water Res; 2011 Feb; 45(5):1995-2001. PubMed ID: 21232782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactivity characteristics of poly(methyl methacrylate) coated nanoscale iron particles for trichloroethylene remediation.
    Wang W; Zhou M; Jin Z; Li T
    J Hazard Mater; 2010 Jan; 173(1-3):724-30. PubMed ID: 19773119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off?
    Grieger KD; Fjordbøge A; Hartmann NB; Eriksson E; Bjerg PL; Baun A
    J Contam Hydrol; 2010 Nov; 118(3-4):165-83. PubMed ID: 20813426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu(II).
    Choi K; Lee W
    J Hazard Mater; 2012 Apr; 211-212():146-53. PubMed ID: 22079185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorbed polyelectrolyte coatings decrease Fe(0) nanoparticle reactivity with TCE in water: conceptual model and mechanisms.
    Phenrat T; Liu Y; Tilton RD; Lowry GV
    Environ Sci Technol; 2009 Mar; 43(5):1507-14. PubMed ID: 19350927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles: direct observation and quantification.
    Wang Q; Jeong SW; Choi H
    J Hazard Mater; 2012 Apr; 213-214():299-310. PubMed ID: 22386819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.