These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 20934417)
1. New site(s) of methylglyoxal-modified human serum albumin, identified by multiple reaction monitoring, alter warfarin binding and prostaglandin metabolism. Kimzey MJ; Yassine HN; Riepel BM; Tsaprailis G; Monks TJ; Lau SS Chem Biol Interact; 2011 Jun; 192(1-2):122-8. PubMed ID: 20934417 [TBL] [Abstract][Full Text] [Related]
2. Site specific modification of the human plasma proteome by methylglyoxal. Kimzey MJ; Kinsky OR; Yassine HN; Tsaprailis G; Stump CS; Monks TJ; Lau SS Toxicol Appl Pharmacol; 2015 Dec; 289(2):155-62. PubMed ID: 26435215 [TBL] [Abstract][Full Text] [Related]
3. Peptide mapping identifies hotspot site of modification in human serum albumin by methylglyoxal involved in ligand binding and esterase activity. Ahmed N; Dobler D; Dean M; Thornalley PJ J Biol Chem; 2005 Feb; 280(7):5724-32. PubMed ID: 15557329 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the binding of warfarin to glyoxal- and methylglyoxal-modified human serum albumin by ultrafast affinity extraction. Iftekhar S; Li Z; Tao P; Poddar S; Hage DS J Chromatogr B Analyt Technol Biomed Life Sci; 2022 Nov; 1211():123500. PubMed ID: 36272357 [TBL] [Abstract][Full Text] [Related]
5. Peptide mapping of human serum albumin modified minimally by methylglyoxal in vitro and in vivo. Ahmed N; Thornalley PJ Ann N Y Acad Sci; 2005 Jun; 1043():260-6. PubMed ID: 16037246 [TBL] [Abstract][Full Text] [Related]
6. Development of tryptophan-modified human serum albumin columns for site-specific studies of drug-protein interactions by high-performance affinity chromatography. Chattopadhyay A; Tian T; Kortum L; Hage DS J Chromatogr B Biomed Sci Appl; 1998 Sep; 715(1):183-90. PubMed ID: 9792509 [TBL] [Abstract][Full Text] [Related]
7. Exploring the interaction between Salvia miltiorrhiza and human serum albumin: Insights from herb-drug interaction reports, computational analysis and experimental studies. Shao X; Ai N; Xu D; Fan X Spectrochim Acta A Mol Biomol Spectrosc; 2016 May; 161():1-7. PubMed ID: 26926393 [TBL] [Abstract][Full Text] [Related]
8. The location of the high- and low-affinity bilirubin-binding sites on serum albumin: ligand-competition analysis investigated by circular dichroism. Goncharova I; Orlov S; Urbanová M Biophys Chem; 2013; 180-181():55-65. PubMed ID: 23838624 [TBL] [Abstract][Full Text] [Related]
9. Characterization of thyroxine-albumin binding using high-performance affinity chromatography. I. Interactions at the warfarin and indole sites of albumin. Loun B; Hage DS J Chromatogr; 1992 Sep; 579(2):225-35. PubMed ID: 1429970 [TBL] [Abstract][Full Text] [Related]
10. Effect of reactive-aldehydes on the modification and dysfunction of human serum albumin. Mera K; Takeo K; Izumi M; Maruyama T; Nagai R; Otagiri M J Pharm Sci; 2010 Mar; 99(3):1614-25. PubMed ID: 19760671 [TBL] [Abstract][Full Text] [Related]
11. Molecular characteristics of methylglyoxal-modified bovine and human serum albumins. Comparison with glucose-derived advanced glycation endproduct-modified serum albumins. Westwood ME; Thornalley PJ J Protein Chem; 1995 Jul; 14(5):359-72. PubMed ID: 8590604 [TBL] [Abstract][Full Text] [Related]
12. Location and characterization of the warfarin binding site of human serum albumin. A comparative study of two large fragments. Bos OJ; Remijn JP; Fischer MJ; Wilting J; Janssen LH Biochem Pharmacol; 1988 Oct; 37(20):3905-9. PubMed ID: 3190737 [TBL] [Abstract][Full Text] [Related]
13. Effect of ibuprofen and warfarin on the allosteric properties of haem-human serum albumin. A spectroscopic study. Baroni S; Mattu M; Vannini A; Cipollone R; Aime S; Ascenzi P; Fasano M Eur J Biochem; 2001 Dec; 268(23):6214-20. PubMed ID: 11733017 [TBL] [Abstract][Full Text] [Related]
14. Site I on human albumin: differences in the binding of (R)- and (S)-warfarin. Bertucci C; Canepa A; Ascoli GA; Guimaraes LF; Felix G Chirality; 1999; 11(9):675-9. PubMed ID: 10506426 [TBL] [Abstract][Full Text] [Related]
15. Probing the structure of the warfarin-binding site on human serum albumin using site-directed mutagenesis. Petersen CE; Ha CE; Curry S; Bhagavan NV Proteins; 2002 May; 47(2):116-25. PubMed ID: 11933059 [TBL] [Abstract][Full Text] [Related]
16. Effect of Cu(ii) on in vitro glycation of human serum albumin by methylglyoxal: a LC-MS-based proteomic approach. Ramirez Segovia AS; Wrobel K; Acevedo Aguilar FJ; Corrales Escobosa AR; Wrobel K Metallomics; 2017 Feb; 9(2):132-140. PubMed ID: 28001159 [TBL] [Abstract][Full Text] [Related]
17. Steric and allosteric effects of fatty acids on the binding of warfarin to human serum albumin revealed by molecular dynamics and free energy calculations. Fujiwara S; Amisaki T Chem Pharm Bull (Tokyo); 2011; 59(7):860-7. PubMed ID: 21720037 [TBL] [Abstract][Full Text] [Related]
18. The HSA affinity of warfarin and flurbiprofen determined by fluorescence anisotropy measurements of camptothecin. Wybranowski T; Cyrankiewicz M; Ziomkowska B; Kruszewski S Biosystems; 2008 Dec; 94(3):258-62. PubMed ID: 18721856 [TBL] [Abstract][Full Text] [Related]
19. Five recombinant fragments of human serum albumin-tools for the characterization of the warfarin binding site. Dockal M; Chang M; Carter DC; Rüker F Protein Sci; 2000 Aug; 9(8):1455-65. PubMed ID: 10975567 [TBL] [Abstract][Full Text] [Related]
20. Characterization of glycation adducts on human serum albumin by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Wa C; Cerny RL; Clarke WA; Hage DS Clin Chim Acta; 2007 Oct; 385(1-2):48-60. PubMed ID: 17707360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]