BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 20935102)

  • 1. GlpR represses fructose and glucose metabolic enzymes at the level of transcription in the haloarchaeon Haloferax volcanii.
    Rawls KS; Yacovone SK; Maupin-Furlow JA
    J Bacteriol; 2010 Dec; 192(23):6251-60. PubMed ID: 20935102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GlpR Is a Direct Transcriptional Repressor of Fructose Metabolic Genes in Haloferax volcanii.
    Martin JH; Sherwood Rawls K; Chan JC; Hwang S; Martinez-Pastor M; McMillan LJ; Prunetti L; Schmid AK; Maupin-Furlow JA
    J Bacteriol; 2018 Sep; 200(17):. PubMed ID: 29914986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fructose degradation in the haloarchaeon Haloferax volcanii involves a bacterial type phosphoenolpyruvate-dependent phosphotransferase system, fructose-1-phosphate kinase, and class II fructose-1,6-bisphosphate aldolase.
    Pickl A; Johnsen U; Schönheit P
    J Bacteriol; 2012 Jun; 194(12):3088-97. PubMed ID: 22493022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycerol-mediated repression of glucose metabolism and glycerol kinase as the sole route of glycerol catabolism in the haloarchaeon Haloferax volcanii.
    Sherwood KE; Cano DJ; Maupin-Furlow JA
    J Bacteriol; 2009 Jul; 191(13):4307-15. PubMed ID: 19411322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Key Enzymes of the Semiphosphorylative Entner-Doudoroff Pathway in the Haloarchaeon Haloferax volcanii: Characterization of Glucose Dehydrogenase, Gluconate Dehydratase, and 2-Keto-3-Deoxy-6-Phosphogluconate Aldolase.
    Sutter JM; Tästensen JB; Johnsen U; Soppa J; Schönheit P
    J Bacteriol; 2016 Aug; 198(16):2251-62. PubMed ID: 27297879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of 2-keto-3-deoxygluconate kinase and 2-keto-3-deoxygalactonate kinase in the haloarchaeon Haloferax volcanii.
    Pickl A; Johnsen U; Archer RM; Schönheit P
    FEMS Microbiol Lett; 2014 Dec; 361(1):76-83. PubMed ID: 25287957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity and transcriptional regulation of bacterial protein-like glycerol-3-phosphate dehydrogenase of the haloarchaea in Haloferax volcanii.
    Rawls KS; Martin JH; Maupin-Furlow JA
    J Bacteriol; 2011 Sep; 193(17):4469-76. PubMed ID: 21725010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose Metabolism and Acetate Switch in Archaea: the Enzymes in Haloferax volcanii.
    Kuprat T; Ortjohann M; Johnsen U; Schönheit P
    J Bacteriol; 2021 Mar; 203(8):. PubMed ID: 33558390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the transcriptional regulator GlpR, promoter elements, and posttranscriptional processing involved in fructose-induced activation of the phosphoenolpyruvate-dependent sugar phosphotransferase system in Haloferax mediterranei.
    Cai L; Cai S; Zhao D; Wu J; Wang L; Liu X; Li M; Hou J; Zhou J; Liu J; Han J; Xiang H
    Appl Environ Microbiol; 2014 Feb; 80(4):1430-40. PubMed ID: 24334671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic Growth of Haloarchaeon Haloferax volcanii by Denitrification Is Controlled by the Transcription Regulator NarO.
    Hattori T; Shiba H; Ashiki K; Araki T; Nagashima YK; Yoshimatsu K; Fujiwara T
    J Bacteriol; 2016 Jan; 198(7):1077-86. PubMed ID: 26787768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycerol metabolic repressor GlpR contributes to Streptococcus suis oxidative stress resistance and virulence.
    Liang Z; Lu J; Bao Y; Chen X; Yao H; Wu Z
    Microbes Infect; 2024 Feb; ():105307. PubMed ID: 38309574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The glycerol-dependent metabolic persistence of Pseudomonas putida KT2440 reflects the regulatory logic of the GlpR repressor.
    Nikel PI; Romero-Campero FJ; Zeidman JA; Goñi-Moreno Á; de Lorenzo V
    mBio; 2015 Mar; 6(2):. PubMed ID: 25827416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional regulation of dimethyl sulfoxide respiration in a haloarchaeon, Haloferax volcanii.
    Qi Q; Ito Y; Yoshimatsu K; Fujiwara T
    Extremophiles; 2016 Jan; 20(1):27-36. PubMed ID: 26507955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum.
    Gaigalat L; Schlüter JP; Hartmann M; Mormann S; Tauch A; Pühler A; Kalinowski J
    BMC Mol Biol; 2007 Nov; 8():104. PubMed ID: 18005413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of a novel transcriptional regulator of sugar catabolism in archaea.
    Johnsen U; Ortjohann M; Reinhardt A; Turner JM; Stratton C; Weber KR; Sanchez KM; Maupin-Furlow J; Davies C; Schönheit P
    Mol Microbiol; 2023 Aug; 120(2):224-240. PubMed ID: 37387308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of a novel type of ketohexokinase from the haloarchaeon Haloferax volcanii.
    Ortjohann M; Schönheit P
    FEMS Microbiol Lett; 2024 Jan; 371():. PubMed ID: 38587824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HMG-CoA reductase is regulated by salinity at the level of transcription in Haloferax volcanii.
    Bidle KA; Hanson TE; Howell K; Nannen J
    Extremophiles; 2007 Jan; 11(1):49-55. PubMed ID: 16969709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Copy Number Control of Two Haloferax volcanii Replication Origins Using Deletion Mutants and Haloarchaeal Artificial Chromosomes.
    Maurer S; Ludt K; Soppa J
    J Bacteriol; 2018 Jan; 200(1):. PubMed ID: 29038254
    [No Abstract]   [Full Text] [Related]  

  • 19. Multiple promoters are responsible for transcription of the glpEGR operon of Escherichia coli K-12.
    Yang B; Larson TJ
    Biochim Biophys Acta; 1998 Mar; 1396(1):114-26. PubMed ID: 9524241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional linkage of Haloferax volcanii proteasomal genes with non-proteasomal gene neighbours including RNase P, MOSC domain and SAM-methyltransferase homologues.
    Gil MA; Sherwood KE; Maupin-Furlow JA
    Microbiology (Reading); 2007 Sep; 153(Pt 9):3009-3022. PubMed ID: 17768244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.