These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 20935131)
1. Impact of metal pollution and Thlaspi caerulescens growth on soil microbial communities. Epelde L; Becerril JM; Kowalchuk GA; Deng Y; Zhou J; Garbisu C Appl Environ Microbiol; 2010 Dec; 76(23):7843-53. PubMed ID: 20935131 [TBL] [Abstract][Full Text] [Related]
2. Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment. Gremion F; Chatzinotas A; Kaufmann K; Von Sigler W; Harms H FEMS Microbiol Ecol; 2004 May; 48(2):273-83. PubMed ID: 19712410 [TBL] [Abstract][Full Text] [Related]
3. Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. McGrath SP; Lombi E; Gray CW; Caille N; Dunham SJ; Zhao FJ Environ Pollut; 2006 May; 141(1):115-25. PubMed ID: 16202493 [TBL] [Abstract][Full Text] [Related]
4. Hyperaccumulation of metals by Thlaspi caerulescens as affected by root development and Cd-Zn/Ca-Mg interactions. Saison C; Schwartz C; Morel JL Int J Phytoremediation; 2004; 6(1):49-61. PubMed ID: 15224775 [TBL] [Abstract][Full Text] [Related]
5. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Koopmans GF; Römkens PF; Fokkema MJ; Song J; Luo YM; Japenga J; Zhao FJ Environ Pollut; 2008 Dec; 156(3):905-14. PubMed ID: 18644664 [TBL] [Abstract][Full Text] [Related]
6. Metal availability and soil toxicity after repeated croppings of Thlaspi caerulescens in metal contaminated soils. Keller C; Hammer D Environ Pollut; 2004 Sep; 131(2):243-54. PubMed ID: 15234091 [TBL] [Abstract][Full Text] [Related]
7. Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Milner MJ; Kochian LV Ann Bot; 2008 Jul; 102(1):3-13. PubMed ID: 18440996 [TBL] [Abstract][Full Text] [Related]
8. Soil geochemical factors regulate Cd accumulation by metal hyperaccumulating Noccaea caerulescens (J. Presl & C. Presl) F.K. Mey in field-contaminated soils. Rosenfeld CE; Chaney RL; Martínez CE Sci Total Environ; 2018 Mar; 616-617():279-287. PubMed ID: 29121576 [TBL] [Abstract][Full Text] [Related]
9. Effects of Cd and Pb on soil microbial community structure and activities. Khan S; Hesham Ael-L; Qiao M; Rehman S; He JZ Environ Sci Pollut Res Int; 2010 Feb; 17(2):288-96. PubMed ID: 19333640 [TBL] [Abstract][Full Text] [Related]
10. Selection of appropriate organic additives for enhancing Zn and Cd phytoextraction by hyperaccumulators. Wu QT; Deng JC; Long XX; Morel JL; Schwartz C J Environ Sci (China); 2006; 18(6):1113-8. PubMed ID: 17294951 [TBL] [Abstract][Full Text] [Related]
11. Cadmium leaching from micro-lysimeters planted with the hyperaccumulator Thlaspi caerulescens: experimental findings and modeling. Ingwersen J; Bücherl B; Neumann G; Streck T J Environ Qual; 2006; 35(6):2055-65. PubMed ID: 17071874 [TBL] [Abstract][Full Text] [Related]
12. Towards practical cadmium phytoextraction with Noccaea caerulescens. Simmons RW; Chaney RL; Angle JS; Kruatrachue M; Klinphoklap S; Reeves RD; Bellamy P Int J Phytoremediation; 2015; 17(1-6):191-9. PubMed ID: 25360891 [TBL] [Abstract][Full Text] [Related]
13. Influence of edaphic conditions and nitrogen fertilizers on cadmium and zinc phytoextraction efficiency of Noccaea caerulescens. Jacobs A; Noret N; Van Baekel A; Liénard A; Colinet G; Drouet T Sci Total Environ; 2019 May; 665():649-659. PubMed ID: 30776637 [TBL] [Abstract][Full Text] [Related]
14. [Effect of the soil bulk density on the root morphology and cadmium uptake by Thlaspi caerulescens grown on Cd-contaminated soil]. Yang Y; Jiang RF; Li HF; Wang W; Zheng RL Huan Jing Ke Xue; 2010 Dec; 31(12):3043-9. PubMed ID: 21360897 [TBL] [Abstract][Full Text] [Related]
15. Soil microbial diversity as affected by the rhizosphere of the hyperaccumulator Thlaspi caerulescens under natural conditions. Aboudrar W; Schwartz C; Benizri E; Morel JL; Boularbah A Int J Phytoremediation; 2007; 9(1):41-52. PubMed ID: 18246714 [TBL] [Abstract][Full Text] [Related]
16. Response of Thlaspi caerulescens to nitrogen, phosphorus and sulfur fertilisation. Catherine S; Christophe S; Louis MJ Int J Phytoremediation; 2006; 8(2):149-61. PubMed ID: 16924963 [TBL] [Abstract][Full Text] [Related]
17. Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils. Li Z; Xu J; Tang C; Wu J; Muhammad A; Wang H Chemosphere; 2006 Mar; 62(8):1374-80. PubMed ID: 16216305 [TBL] [Abstract][Full Text] [Related]
18. Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations. Delorme TA; Gagliardi JV; Angle JS; Chaney RL Can J Microbiol; 2001 Aug; 47(8):773-6. PubMed ID: 11575505 [TBL] [Abstract][Full Text] [Related]
19. Cadmium/zinc stresses and plant cultivation influenced soil microflora: a pot experiment conducted in field. Guo D; Tian K; Peng X; Liu S; Xu X; Tian W Ecotoxicol Environ Saf; 2024 Jun; 277():116384. PubMed ID: 38657451 [TBL] [Abstract][Full Text] [Related]
20. Decrease of labile Zn and Cd in the rhizosphere of hyperaccumulating Thlaspi caerulescens with time. Dessureault-Rompré J; Luster J; Schulin R; Tercier-Waeber ML; Nowack B Environ Pollut; 2010 May; 158(5):1955-62. PubMed ID: 19913965 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]