These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 20935357)

  • 21. Selective and Scalable Chemical Removal of Thin Single-Walled Carbon Nanotubes from their Mixtures with Double-Walled Carbon Nanotubes.
    Komínková Z; Valeš V; Kalbáč M
    Chemistry; 2015 Nov; 21(45):16147-53. PubMed ID: 26358882
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The feasibility of isolation and detection of fullerenes and carbon nanotubes using the benzene polycarboxylic acid method.
    Ziolkowski LA; Druffel ER
    Mar Pollut Bull; 2009; 59(4-7):213-8. PubMed ID: 19464702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A nonlocal shell model for mode transformation in single-walled carbon nanotubes.
    Shi MX; Li QM; Huang Y
    J Phys Condens Matter; 2009 Nov; 21(45):455301. PubMed ID: 21694006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective removal of metallic single-walled carbon nanotubes with small diameters by using nitric and sulfuric acids.
    Yang CM; Park JS; An KH; Lim SC; Seo K; Kim B; Park KA; Han S; Park CY; Lee YH
    J Phys Chem B; 2005 Oct; 109(41):19242-8. PubMed ID: 16853485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Raman scattering of single-wall carbon nanotubes produced using Y/Ni catalyst].
    Wang YF; Liu HR; Xu XX; Shao Y; Cao XW; Hu SF; Liu YY; Lan GX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Aug; 22(4):580-3. PubMed ID: 12938370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface-enhanced Raman scattering of single-walled carbon nanotubes on modified silver electrode.
    Hou X; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Apr; 69(4):1140-5. PubMed ID: 17686652
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advances in TERS (tip-enhanced Raman scattering) for biochemical applications.
    Treffer R; Böhme R; Deckert-Gaudig T; Lau K; Tiede S; Lin X; Deckert V
    Biochem Soc Trans; 2012 Aug; 40(4):609-14. PubMed ID: 22817703
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tip-enhanced Raman scattering (TERS) and high-resolution bio nano-analysis--a comparison.
    Deckert-Gaudig T; Deckert V
    Phys Chem Chem Phys; 2010 Oct; 12(38):12040-9. PubMed ID: 20730156
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tip-Enhanced Raman Spectroscopic Imaging of Individual Carbon Nanotubes with Subnanometer Resolution.
    Liao M; Jiang S; Hu C; Zhang R; Kuang Y; Zhu J; Zhang Y; Dong Z
    Nano Lett; 2016 Jul; 16(7):4040-6. PubMed ID: 27348072
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Why single-walled carbon nanotubes can be dispersed in imidazolium-based ionic liquids.
    Wang J; Chu H; Li Y
    ACS Nano; 2008 Dec; 2(12):2540-6. PubMed ID: 19206290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative analysis of polarization-controlled tip-enhanced Raman imaging through the evaluation of the tip dipole.
    Mino T; Saito Y; Verma P
    ACS Nano; 2014 Oct; 8(10):10187-95. PubMed ID: 25171468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studying surface chemistry beyond the diffraction limit: 10 years of TERS.
    Domke KF; Pettinger B
    Chemphyschem; 2010 May; 11(7):1365-73. PubMed ID: 20394100
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction between single-wall carbon nanotubes and encapsulated C60 probed by resonance Raman spectroscopy.
    Joung SK; Okazaki T; Okada S; Iijima S
    Phys Chem Chem Phys; 2010 Jul; 12(28):8118-22. PubMed ID: 20526513
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tip-enhanced Raman spectroscopy (TERS) for in situ identification of indigo and iron gall ink on paper.
    Kurouski D; Zaleski S; Casadio F; Van Duyne RP; Shah NC
    J Am Chem Soc; 2014 Jun; 136(24):8677-84. PubMed ID: 24848305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The intermediate frequency modes of single- and double-walled carbon nanotubes: a Raman spectroscopic and in situ Raman spectroelectrochemical study.
    Kalbac M; Kavan L; Zukalová M; Dunsch L
    Chemistry; 2006 May; 12(16):4451-7. PubMed ID: 16552794
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulatory peptides are susceptible to oxidation by metallic impurities within carbon nanotubes.
    Ambrosi A; Pumera M
    Chemistry; 2010 Feb; 16(6):1786-92. PubMed ID: 20066697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoscale chemical imaging of solid-liquid interfaces using tip-enhanced Raman spectroscopy.
    Kumar N; Su W; Veselý M; Weckhuysen BM; Pollard AJ; Wain AJ
    Nanoscale; 2018 Jan; 10(4):1815-1824. PubMed ID: 29308817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tip-enhanced nano-Raman analytical imaging of locally induced strain distribution in carbon nanotubes.
    Yano TA; Ichimura T; Kuwahara S; H'dhili F; Uetsuki K; Okuno Y; Verma P; Kawata S
    Nat Commun; 2013; 4():2592. PubMed ID: 24096985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules.
    Pettinger B; Schambach P; Villagómez CJ; Scott N
    Annu Rev Phys Chem; 2012; 63():379-99. PubMed ID: 22263910
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DFT calculations of structures, (13)C NMR chemical shifts, and Raman RBM mode of simple models of small-diameter zigzag (4,0) carboxylated single-walled carbon nanotubes.
    Kupka T; Chełmecka E; Pasterny K; Stachów M; Stobiński L
    Magn Reson Chem; 2012 Feb; 50(2):142-51. PubMed ID: 22354820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.