These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 20935362)

  • 1. Inhibitory effect of copper on enhanced biological phosphorus removal.
    Wu G; Rodgers M
    Water Sci Technol; 2010; 62(7):1464-70. PubMed ID: 20935362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of polyhydroxybutyrate by activated sludge performing enhanced biological phosphorus removal.
    Rodgers M; Wu G
    Bioresour Technol; 2010 Feb; 101(3):1049-53. PubMed ID: 19765985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of polyhydroxyalkanoates production by activated sludges from anaerobic and oxic zones of an enhanced biological phosphorus removal system: effect of sludge retention time.
    Chang HF; Chang WC; Chuang SH; Fang YL
    Bioresour Technol; 2011 May; 102(9):5473-8. PubMed ID: 21093256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor.
    Zeng RJ; Lemaire R; Yuan Z; Keller J
    Biotechnol Bioeng; 2003 Oct; 84(2):170-8. PubMed ID: 12966573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate removal under denitrifying conditions by Brachymonas sp. strain P12 and Paracoccus denitrificans PP15.
    Shi HP; Lee CM
    Can J Microbiol; 2007 Jun; 53(6):727-37. PubMed ID: 17668033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors affecting the microbial populations at full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants in The Netherlands.
    López-Vázquez CM; Hooijmans CM; Brdjanovic D; Gijzen HJ; van Loosdrecht MC
    Water Res; 2008 May; 42(10-11):2349-60. PubMed ID: 18272198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endogenous processes during long-term starvation in activated sludge performing enhanced biological phosphorus removal.
    Lopez C; Pons MN; Morgenroth E
    Water Res; 2006 May; 40(8):1519-30. PubMed ID: 16631226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison between aerobic and anoxic metabolism of denitrifying-EBPR sludge: effect of biomass poly-hydroxyalkanoates content.
    Kapagiannidis AG; Zafiriadis I; Aivasidis A
    N Biotechnol; 2013 Jan; 30(2):227-37. PubMed ID: 22677086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison between UCT type and DPAO biomass phosphorus removal efficiency under aerobic and anoxic conditions.
    Kapagiannidis AG; Zafiriadis I; Aivasidis A
    Water Sci Technol; 2009; 60(10):2695-703. PubMed ID: 19923776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nutrient removal, microbial community and sludge settlement in anaerobic/aerobic sequencing batch reactors without enhanced biological phosphorus removal.
    Wu G; Rodgers M
    Water Sci Technol; 2010; 61(10):2433-41. PubMed ID: 20453315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerobic phosphorus release linked to acetate uptake in bio-P sludge: process modeling using oxygen uptake rate.
    Guisasola A; Pijuan M; Baeza JA; Carrera J; Casas C; Lafuente J
    Biotechnol Bioeng; 2004 Mar; 85(7):722-33. PubMed ID: 14991650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorus release mechanisms during digestion of EBPR sludge under anaerobic, anoxic and aerobic conditions.
    Bi D; Guo X; Chen D
    Water Sci Technol; 2013; 67(9):1953-9. PubMed ID: 23656937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of copper ion on the anaerobic and aerobic metabolism of phosphorus-accumulating organisms linked to intracellular storage compounds.
    Wang Y; Ren Z; Jiang F; Geng J; He W; Yang J
    J Hazard Mater; 2011 Feb; 186(1):313-9. PubMed ID: 21112693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of temperature, pH and dissolved oxygen concentration on enhanced biological phosphorus removal under strictly aerobic conditions.
    Nittami T; Oi H; Matsumoto K; Seviour RJ
    N Biotechnol; 2011 Dec; 29(1):2-8. PubMed ID: 21718809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring pH and electric conductivity in an EBPR sequencing batch reactor.
    Serralta J; Borrás L; Blanco C; Barat R; Seco A
    Water Sci Technol; 2004; 50(10):145-52. PubMed ID: 15656307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent developments in the biochemistry and ecology of enhanced biological phosphorus removal.
    Kortstee GJ; Appeldoorn KJ; Bonting CF; van Niel EW; van Veen HW
    Biochemistry (Mosc); 2000 Mar; 65(3):332-40. PubMed ID: 10739476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pH on biological phosphorus uptake.
    Serralta J; Ferrer J; Borrás L; Seco A
    Biotechnol Bioeng; 2006 Dec; 95(5):875-82. PubMed ID: 16958137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nature of the carbon source rules the competition between PAO and denitrifiers in systems for simultaneous biological nitrogen and phosphorus removal.
    Guerrero J; Guisasola A; Baeza JA
    Water Res; 2011 Oct; 45(16):4793-802. PubMed ID: 21774957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metatranscriptomic array analysis of 'Candidatus Accumulibacter phosphatis'-enriched enhanced biological phosphorus removal sludge.
    He S; Kunin V; Haynes M; Martin HG; Ivanova N; Rohwer F; Hugenholtz P; McMahon KD
    Environ Microbiol; 2010 May; 12(5):1205-17. PubMed ID: 20148930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental assessment and modelling of the proton production linked to phosphorus release and uptake in EBPR systems.
    Marcelino M; Guisasola A; Baeza JA
    Water Res; 2009 May; 43(9):2431-40. PubMed ID: 19328517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.