These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

633 related articles for article (PubMed ID: 20935650)

  • 1. De novo assembly and analysis of RNA-seq data.
    Robertson G; Schein J; Chiu R; Corbett R; Field M; Jackman SD; Mungall K; Lee S; Okada HM; Qian JQ; Griffith M; Raymond A; Thiessen N; Cezard T; Butterfield YS; Newsome R; Chan SK; She R; Varhol R; Kamoh B; Prabhu AL; Tam A; Zhao Y; Moore RA; Hirst M; Marra MA; Jones SJ; Hoodless PA; Birol I
    Nat Methods; 2010 Nov; 7(11):909-12. PubMed ID: 20935650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Challenges and advances for transcriptome assembly in non-model species.
    Ungaro A; Pech N; Martin JF; McCairns RJS; Mévy JP; Chappaz R; Gilles A
    PLoS One; 2017; 12(9):e0185020. PubMed ID: 28931057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data.
    Duan J; Xia C; Zhao G; Jia J; Kong X
    BMC Genomics; 2012 Aug; 13():392. PubMed ID: 22891638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo transcriptome assembly with ABySS.
    Birol I; Jackman SD; Nielsen CB; Qian JQ; Varhol R; Stazyk G; Morin RD; Zhao Y; Hirst M; Schein JE; Horsman DE; Connors JM; Gascoyne RD; Marra MA; Jones SJ
    Bioinformatics; 2009 Nov; 25(21):2872-7. PubMed ID: 19528083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative performance of transcriptome assembly methods for non-model organisms.
    Huang X; Chen XG; Armbruster PA
    BMC Genomics; 2016 Jul; 17():523. PubMed ID: 27464550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TraRECo: a greedy approach based de novo transcriptome assembler with read error correction using consensus matrix.
    Yoon S; Kim D; Kang K; Park WJ
    BMC Genomics; 2018 Sep; 19(1):653. PubMed ID: 30180798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ABySS: a parallel assembler for short read sequence data.
    Simpson JT; Wong K; Jackman SD; Schein JE; Jones SJ; Birol I
    Genome Res; 2009 Jun; 19(6):1117-23. PubMed ID: 19251739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single read and paired end mRNA-Seq Illumina libraries from 10 nanograms total RNA.
    Sengupta S; Bolin JM; Ruotti V; Nguyen BK; Thomson JA; Elwell AL; Stewart R
    J Vis Exp; 2011 Oct; (56):e3340. PubMed ID: 22064688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcript Profiling Using Long-Read Sequencing Technologies.
    Bayega A; Wang YC; Oikonomopoulos S; Djambazian H; Fahiminiya S; Ragoussis J
    Methods Mol Biol; 2018; 1783():121-147. PubMed ID: 29767360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.
    Hoang NV; Furtado A; Mason PJ; Marquardt A; Kasirajan L; Thirugnanasambandam PP; Botha FC; Henry RJ
    BMC Genomics; 2017 May; 18(1):395. PubMed ID: 28532419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IsoTree: A New Framework for de novo Transcriptome Assembly from RNA-seq Reads.
    Zhao J; Feng H; Zhu D; Zhang C; Xu Y
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):938-948. PubMed ID: 29994455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De Novo Plant Transcriptome Assembly and Annotation Using Illumina RNA-Seq Reads.
    Kerr SC; Gaiti F; Tanurdzic M
    Methods Mol Biol; 2019; 1933():265-275. PubMed ID: 30945191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CAPRG: sequence assembling pipeline for next generation sequencing of non-model organisms.
    Rawat A; Elasri MO; Gust KA; George G; Pham D; Scanlan LD; Vulpe C; Perkins EJ
    PLoS One; 2012; 7(2):e30370. PubMed ID: 22319566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo assembly of short sequence reads.
    Paszkiewicz K; Studholme DJ
    Brief Bioinform; 2010 Sep; 11(5):457-72. PubMed ID: 20724458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallizing short-read assemblies around seeds.
    Hossain MS; Azimi N; Skiena S
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S16. PubMed ID: 19208115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of de novo transcriptome assembly from next-generation sequencing data.
    Surget-Groba Y; Montoya-Burgos JI
    Genome Res; 2010 Oct; 20(10):1432-40. PubMed ID: 20693479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing.
    Jäger M; Ott CE; Grünhagen J; Hecht J; Schell H; Mundlos S; Duda GN; Robinson PN; Lienau J
    BMC Genomics; 2011 Mar; 12():158. PubMed ID: 21435219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo assembly and characterization of the liver transcriptome of Mugil incilis (lisa) using next generation sequencing.
    Bertel-Sevilla A; Alzate JF; Olivero-Verbel J
    Sci Rep; 2020 Aug; 10(1):13957. PubMed ID: 32811897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-referenced genome assembly from epigenomic short-read data.
    Kaspi A; Ziemann M; Keating ST; Khurana I; Connor T; Spolding B; Cooper A; Lazarus R; Walder K; Zimmet P; El-Osta A
    Epigenetics; 2014 Oct; 9(10):1329-38. PubMed ID: 25437048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods for the detection and assembly of novel sequence in high-throughput sequencing data.
    Holtgrewe M; Kuchenbecker L; Reinert K
    Bioinformatics; 2015 Jun; 31(12):1904-12. PubMed ID: 25649620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.