These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20935696)

  • 1. Sum-frequency mixing of radiation from two extended-cavity laser diodes using a doubly resonant external cavity for laser cooling of trapped ytterbium ions.
    Sugiyama K; Kawajiri S; Yabu N; Matsumoto K; Kitano M
    Appl Opt; 2010 Oct; 49(29):5510-6. PubMed ID: 20935696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable 397-nm light source for spectroscopy obtained by frequency doubling of a diode laser.
    Hayasaka K; Watanabe M; Imajo H; Ohmukai R; Urabe S
    Appl Opt; 1994 Apr; 33(12):2290-3. PubMed ID: 20885576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser cooling of beryllium ions using a frequency-doubled 626 nm diode laser.
    Cozijn FM; Biesheuvel J; Flores AS; Ubachs W; Blume G; Wicht A; Paschke K; Erbert G; Koelemeij JC
    Opt Lett; 2013 Jul; 38(13):2370-2. PubMed ID: 23811931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Third-harmonic-generation of a diode laser for quantum control of beryllium ions.
    Carollo RA; Lane DA; Kleiner EK; Kyaw PA; Teng CC; Ou CY; Qiao S; Hanneke D
    Opt Express; 2017 Apr; 25(7):7220-7229. PubMed ID: 28380847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous-Wave, All-Solid-State, Single-Frequency 400-mW Source at 589 nm Based on Doubly Resonant Sum-Frequency Mixing in a Monolithic Lithium Niobate Resonator.
    Vance JD; She CY; Moosmüller H
    Appl Opt; 1998 Jul; 37(21):4891-6. PubMed ID: 18285953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable type II intracavity sum-frequency generation in a two chip collinear vertical external cavity surface emitting laser.
    Hessenius C; Lukowski M; Fallahi M
    Opt Lett; 2013 Mar; 38(5):640-2. PubMed ID: 23455250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extended temperature tuning of an ultraviolet diode laser for trapping and cooling single Yb+ ions.
    Nguyen AT; Wang LB; Schauer MM; Torgerson JR
    Rev Sci Instrum; 2010 May; 81(5):053110. PubMed ID: 20515127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency control of a 1163 nm singly resonant OPO based on MgO:PPLN.
    Gross P; Lindsay ID; Lee CJ; Nittmann M; Bauer T; Bartschke J; Warring U; Fischer A; Kellerbauer A; Boller KJ
    Opt Lett; 2010 Mar; 35(6):820-2. PubMed ID: 20237610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms.
    Hosoya T; Miranda M; Inoue R; Kozuma M
    Rev Sci Instrum; 2015 Jul; 86(7):073110. PubMed ID: 26233359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous wave uv radiation tunable from 285 nm to 400 nm by harmonic and sum frequency generation.
    Blit S; Weaver EG; Rabson TA; Tittel FK
    Appl Opt; 1978 Mar; 17(5):721-3. PubMed ID: 20197862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of all-solid-state, high-power continuous-wave 213-nm light based on sum-frequency mixing in CsLiB6O10.
    Sakuma J; Asakawa Y; Imahoko T; Obara M
    Opt Lett; 2004 May; 29(10):1096-8. PubMed ID: 15181997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compact, broadly tunable, mid-IR source for the spectroscopic investigation of molecular reference lines in the 27- to 33-THz range.
    Kaing T; Zondy JJ; Yelisseyev A; Lobanov S; Isaenko L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):506-12. PubMed ID: 18238574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent addition of laser beams in resonant passive optical cavities.
    Ferrari G; Catani J; Fallani L; Giusfredi G; Schettino G; Schäfer F; Cancio Pastor P
    Opt Lett; 2010 Sep; 35(18):3105-7. PubMed ID: 20847793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of continuous-wave 194-nm radiation by sum-frequency mixing in an external ring cavity.
    Hemmati H; Bergquist JC; Itano WM
    Opt Lett; 1983 Feb; 8(2):73-5. PubMed ID: 19714140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a high-power deep-ultraviolet continuous-wave coherent light source for laser cooling of silicon atoms.
    Fujii T; Kumagai H; Midorikawa K; Obara M
    Opt Lett; 2000 Oct; 25(19):1457-9. PubMed ID: 18066247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient sum-frequency generation of continuous-wave single-frequency coherent light at 252 nm with dual wavelength enhancement.
    Kumagai H; Midorikawa K; Iwane T; Obara M
    Opt Lett; 2003 Oct; 28(20):1969-71. PubMed ID: 14587792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sum-frequency generation of continuous-wave light at 194 nm.
    Berkeland DJ; Cruz FC; Bergquist JC
    Appl Opt; 1997 Jun; 36(18):4159-62. PubMed ID: 18253443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine frequency tuning in sum-frequency generation of continuous-wave single-frequency coherent light at 252 nm with dual-wavelength enhancement.
    Kumagai H
    Opt Lett; 2007 Jan; 32(1):62-4. PubMed ID: 17167584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous-wave coherent ultraviolet source at 326 nm based on frequency trippling of fiber amplifiers.
    Kim JI; Meschede D
    Opt Express; 2008 Jul; 16(14):10803-8. PubMed ID: 18607495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time monitoring of Yb vapor density using an extended cavity violet diode laser.
    Park H; Kwon DH; Rhee Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Dec; 60(14):3305-9. PubMed ID: 15561613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.