These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 20935747)

  • 1. Application of quantitative two-line OH planar laser-induced fluorescence for temporally resolved planar thermometry in reacting flows.
    Seitzman JM; Hanson RK; Debarber PA; Hess CF
    Appl Opt; 1994 Jun; 33(18):4000-12. PubMed ID: 20935747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow.
    McMillin BK; Palmer JL; Hanson RK
    Appl Opt; 1993 Dec; 32(36):7532-45. PubMed ID: 20861973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature imaging in a supersonic free jet of combustion gases with two-line OH fluorescence.
    Palmer JL; Hanson RK
    Appl Opt; 1996 Jan; 35(3):485-99. PubMed ID: 21069034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of line-peak and line-scanning excitation in two-color laser-induced-fluorescence thermometry of OH.
    Kostka S; Roy S; Lakusta PJ; Meyer TR; Renfro MW; Gord JR; Branam R
    Appl Opt; 2009 Nov; 48(32):6332-43. PubMed ID: 19904334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative 2-D OH thermometry using spectrally resolved planar laser-induced fluorescence.
    Wang S; Hanson RK
    Opt Lett; 2019 Feb; 44(3):578-581. PubMed ID: 30702683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO.
    Lee MP; McMillin BK; Hanson RK
    Appl Opt; 1993 Sep; 32(27):5379-96. PubMed ID: 20856348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature measurement by two-line laser-saturated OH fluorescence in flames.
    Lucht RP; Laurendeau NM; Sweeney DW
    Appl Opt; 1982 Oct; 21(20):3729-35. PubMed ID: 20396307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crank-angle-resolved laser-induced fluorescence imaging of NO in a spark-ignition engine at 248 nm and correlations to flame front propagation and pressure release.
    Knapp M; Luczak A; Schlüter H; Beushausen V; Hentschel W; Andresen P
    Appl Opt; 1996 Jul; 35(21):4009-17. PubMed ID: 21102804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous velocity and temperature measurements in gaseous flowfields using the vibrationally excited nitric oxide monitoring technique: a comprehensive study.
    Sánchez-González R; Bowersox RD; North SW
    Appl Opt; 2012 Mar; 51(9):1216-28. PubMed ID: 22441464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-pulse, two-line temperature-measurement technique using KrF laser-induced O(2) fluorescence.
    Grinstead JH; Laufer G; McDaniel JC
    Appl Opt; 1995 Aug; 34(24):5501-12. PubMed ID: 21060372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of optical fibers for gas-phase, ultraviolet laser-induced-fluorescence (UV-LIF) spectroscopy.
    Hsu PS; Kulatilaka WD; Jiang N; Gord JR; Roy S
    Appl Opt; 2012 Jun; 51(18):4047-57. PubMed ID: 22722279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-dimensional single-shot thermometry in flames using femtosecond-CARS line imaging.
    Kulatilaka WD; Stauffer HU; Gord JR; Roy S
    Opt Lett; 2011 Nov; 36(21):4182-4. PubMed ID: 22048358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Planar laser-induced fluorescence of OH in a chemically reacting boundary layer.
    Pfefferle LD; Griffin TA; Winter M
    Appl Opt; 1988 Aug; 27(15):3197-202. PubMed ID: 20531918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection of absorption lines for I(2)-planar laser-induced fluorescence measurement of temperature in a compressible flow.
    Ni-Imi T; Fujimoto T; Ishida T
    Appl Opt; 1995 Sep; 34(27):6275-81. PubMed ID: 21060471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instantaneous temperature field measurements using planar laser-induced fluorescence.
    Seitzman JM; Kychakoff G; Hanson RK
    Opt Lett; 1985 Sep; 10(9):439-41. PubMed ID: 19724474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-color volumetric laser-induced fluorescence for 3D OH and temperature fields in turbulent reacting flows.
    Halls BR; Hsu PS; Roy S; Meyer TR; Gord JR
    Opt Lett; 2018 Jun; 43(12):2961-2964. PubMed ID: 29905734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-repetition-rate three-dimensional OH imaging using scanned planar laser-induced fluorescence system for multiphase combustion.
    Cho KY; Satija A; Pourpoint TL; Son SF; Lucht RP
    Appl Opt; 2014 Jan; 53(3):316-26. PubMed ID: 24514114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas-phase kinetics of hydroxyl radical reactions with alkenes: experiment and theory.
    Daranlot J; Bergeat A; Caralp F; Caubet P; Costes M; Forst W; Loison JC; Hickson KM
    Chemphyschem; 2010 Dec; 11(18):4002-10. PubMed ID: 20839269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous wave laser absorption techniques for gasdynamic measurements in supersonic flows.
    Davidson DF; Chang AY; Dirosa MD; Hanson RK
    Appl Opt; 1991 Jun; 30(18):2598-608. PubMed ID: 20700249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Point and planar ultraviolet excitation/detection of hydroxyl-radical laser-induced fluorescence through long optical fibers.
    Kulatilaka WD; Hsu PS; Gord JR; Roy S
    Opt Lett; 2011 May; 36(10):1818-20. PubMed ID: 21593901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.