These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Psychophysical study of the visual sun location in pictures of cloudy and twilight skies inspired by Viking navigation. Barta A; Horváth G; Meyer-Rochow VB J Opt Soc Am A Opt Image Sci Vis; 2005 Jun; 22(6):1023-34. PubMed ID: 15984474 [TBL] [Abstract][Full Text] [Related]
3. On the trail of Vikings with polarized skylight: experimental study of the atmospheric optical prerequisites allowing polarimetric navigation by Viking seafarers. Horváth G; Barta A; Pomozi I; Suhai B; Hegedüs R; Akesson S; Meyer-Rochow B; Wehner R Philos Trans R Soc Lond B Biol Sci; 2011 Mar; 366(1565):772-82. PubMed ID: 21282181 [TBL] [Abstract][Full Text] [Related]
4. Study on skylight polarization patterns over the ocean for polarized light navigation application. Guan L; Li S; Zhai L; Liu S; Liu H; Lin W; Cui Y; Chu J; Xie H Appl Opt; 2018 Jul; 57(21):6243-6251. PubMed ID: 30118011 [TBL] [Abstract][Full Text] [Related]
5. Accuracy of the hypothetical sky-polarimetric Viking navigation versus sky conditions: revealing solar elevations and cloudinesses favourable for this navigation method. Száz D; Farkas A; Barta A; Kretzer B; Blahó M; Egri Á; Szabó G; Horváth G Proc Math Phys Eng Sci; 2017 Sep; 473(2205):20170358. PubMed ID: 28989312 [TBL] [Abstract][Full Text] [Related]
6. How could the Viking Sun compass be used with sunstones before and after sunset? Twilight board as a new interpretation of the Uunartoq artefact fragment. Bernáth B; Farkas A; Száz D; Blahó M; Egri A; Barta A; Akesson S; Horváth G Proc Math Phys Eng Sci; 2014 Jun; 470(2166):20130787. PubMed ID: 24910520 [TBL] [Abstract][Full Text] [Related]
7. Adjustment errors of sunstones in the first step of sky-polarimetric Viking navigation: studies with dichroic cordierite/ tourmaline and birefringent calcite crystals. Száz D; Farkas A; Blahó M; Barta A; Egri Á; Kretzer B; Hegedüs T; Jäger Z; Horváth G R Soc Open Sci; 2016 Jan; 3(1):150406. PubMed ID: 26909167 [TBL] [Abstract][Full Text] [Related]
8. Why is it advantageous for animals to detect celestial polarization in the ultraviolet? Skylight polarization under clouds and canopies is strongest in the UV. Barta A; Horváth G J Theor Biol; 2004 Feb; 226(4):429-37. PubMed ID: 14759649 [TBL] [Abstract][Full Text] [Related]
9. Polarization transition between sunlit and moonlit skies with possible implications for animal orientation and Viking navigation: anomalous celestial twilight polarization at partial moon. Barta A; Farkas A; Száz D; Egri Á; Barta P; Kovács J; Csák B; Jankovics I; Szabó G; Horváth G Appl Opt; 2014 Aug; 53(23):5193-204. PubMed ID: 25320929 [TBL] [Abstract][Full Text] [Related]
10. An evaluation of skylight polarization patterns for navigation. Ma T; Hu X; Zhang L; Lian J; He X; Wang Y; Xian Z Sensors (Basel); 2015 Mar; 15(3):5895-913. PubMed ID: 25763652 [TBL] [Abstract][Full Text] [Related]
11. Modeling the celestial distribution of skylight polarization patterns by incorporating the influence of both the sun and the moon through an analytical model. Wang X; Zhou Y; Gao J Appl Opt; 2023 Sep; 62(26):6993-6999. PubMed ID: 37707039 [TBL] [Abstract][Full Text] [Related]
12. Polarization patterns under different sky conditions and a navigation method based on the symmetry of the AOP map of skylight. Zhao H; Xu W; Zhang Y; Li X; Zhang H; Xuan J; Jia B Opt Express; 2018 Oct; 26(22):28589-28603. PubMed ID: 30470033 [TBL] [Abstract][Full Text] [Related]
13. Reflection-polarization patterns at flat water surfaces and their relevance for insect polarization vision. Horvath G J Theor Biol; 1995 Jul; 175(1):27-37. PubMed ID: 9441813 [TBL] [Abstract][Full Text] [Related]
15. Success of sky-polarimetric Viking navigation: revealing the chance Viking sailors could reach Greenland from Norway. Száz D; Horváth G R Soc Open Sci; 2018 Apr; 5(4):172187. PubMed ID: 29765673 [TBL] [Abstract][Full Text] [Related]
16. Image-registration-based solar meridian detection for accurate and robust polarization navigation. Pan S; Lin J; Zhang Y; Hu B; Liu X; Yu Q Opt Express; 2024 Jan; 32(2):1357-1370. PubMed ID: 38297690 [TBL] [Abstract][Full Text] [Related]
17. Skylight Polarization Pattern Simulator Based on a Virtual-Real-Fusion Framework for Urban Bionic Polarization Navigation. Li Q; Dong L; Hu Y; Hao Q; Lv J; Cao J; Cheng Y Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571690 [TBL] [Abstract][Full Text] [Related]
18. Limitation of Rayleigh sky model for bioinspired polarized skylight navigation in three-dimensional attitude determination. Liang H; Bai H; Liu N; Shen K Bioinspir Biomim; 2020 May; 15(4):046007. PubMed ID: 32106105 [TBL] [Abstract][Full Text] [Related]
19. Adaptive method for estimating information from a polarized skylight. Yang T; Wang X; Pu X; Shi Z; Sun S; Gao J Appl Opt; 2021 Oct; 60(30):9504-9511. PubMed ID: 34807092 [TBL] [Abstract][Full Text] [Related]
20. Improved Models of Imaging of Skylight Polarization Through a Fisheye Lens. Sun S; Gao J; Wang D; Yang T; Wang X Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31703263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]