BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 20935864)

  • 1. Remote sensing of atmospheric turbulence and transverse winds from wave-front slope measurements from crossed optical paths.
    Welsh BM; Koeffler SC
    Appl Opt; 1994 Jul; 33(21):4880-8. PubMed ID: 20935864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensing refractive-turbulence profiles (C(n)(2)) using wave front phase measurements from multiple reference sources.
    Welsh BM
    Appl Opt; 1992 Dec; 31(34):7283-91. PubMed ID: 20802595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wind and refractive-turbulence sensing using crossed laser beams.
    Wang TI; Clifford SF; Ochs GR
    Appl Opt; 1974 Nov; 13(11):2602-8. PubMed ID: 20134740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote sensing of atmospheric winds using speckleturbulence interaction, a CO(2) laser, and optical heterodyne detection.
    Holmes JF; Amzajerdian F; Gudimetla RV; Hunt JM
    Appl Opt; 1988 Jun; 27(12):2532-8. PubMed ID: 20531787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remote sensing of wind velocity and strength of refractive turbulence using a two-spatial-filter receiver.
    Hanson SG; Churnside JH; Wilson JJ
    Appl Opt; 1994 Sep; 33(25):5859-68. PubMed ID: 20935989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical anemometry based on the temporal cross-correlation of angle-of-arrival fluctuations obtained from spatially separated light sources.
    Tichkule S; Muschinski A
    Appl Opt; 2012 Jul; 51(21):5272-82. PubMed ID: 22858972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparisons of meteorological structure parameters in complex terrain using optical and acoustical techniques.
    Porch WM; Neff WD; King CW
    Appl Opt; 1988 Jun; 27(11):2222-8. PubMed ID: 20531740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of wind-driven telescope vibrations on measurements of turbulent angle-of-arrival fluctuations.
    Tichkule S; Muschinski A
    Appl Opt; 2014 Jul; 53(21):4651-60. PubMed ID: 25090200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational ghost imaging for remote sensing.
    Erkmen BI
    J Opt Soc Am A Opt Image Sci Vis; 2012 May; 29(5):782-9. PubMed ID: 22561937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal-to-noise ratio for astronomical imaging by deconvolution from wave-front sensing.
    Roggemann MC; Welsh BM
    Appl Opt; 1994 Aug; 33(23):5400-14. PubMed ID: 20935931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crosswind sensing from optical-turbulence-induced fluctuations measured by a video camera.
    Porat O; Shapira J
    Appl Opt; 2010 Oct; 49(28):5236-44. PubMed ID: 20885458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theory of measuring the path-averaged inner scale of turbulence by spatial filtering of optical scintillation.
    Hill RJ
    Appl Opt; 1982 Apr; 21(7):1201-11. PubMed ID: 20389832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical communication through random atmospheric turbulence.
    Laussade JP; Yariv A; Comly J
    Appl Opt; 1969 Aug; 8(8):1607-11. PubMed ID: 20072485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biased estimators and object-spectrum estimation in the method of deconvolution from wave-front sensing.
    Roggemann MC; Welsh BM; Devey J
    Appl Opt; 1994 Aug; 33(24):5754-63. PubMed ID: 20935977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Target-in-the-loop remote sensing of laser beam and atmospheric turbulence characteristics.
    Vorontsov MA; Lachinova SL; Majumdar AK
    Appl Opt; 2016 Jul; 55(19):5172-9. PubMed ID: 27409206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase-front distortion of laser radiation in a turbulent atmosphere.
    Born GK; Bogenberger R; Erben KD; Frank F; Mohr F; Sepp G
    Appl Opt; 1975 Dec; 14(12):2857-63. PubMed ID: 20155123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slant-path scintillation in the planetary boundary layer.
    Dabberdt WF
    Appl Opt; 1973 Jul; 12(7):1536-43. PubMed ID: 20125559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of scintillations to measure average wind across a light beam.
    Lawrence RS; Ochs GR; Clifford SF
    Appl Opt; 1972 Feb; 11(2):239-43. PubMed ID: 20111487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal-to-noise comparison of deconvolution from wave-front sensing with traditional linear and speckle image reconstruction.
    Welsh BM; Roggemann MC
    Appl Opt; 1995 Apr; 34(12):2111-9. PubMed ID: 21037757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.