These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 20935864)

  • 21. Monitoring of atmospheric nitrogen dioxide by long-path pulsed differential optical absorption spectroscopy using two different light paths.
    Kambe Y; Yoshii Y; Takahashi K; Tonokura K
    J Environ Monit; 2012 Mar; 14(3):944-50. PubMed ID: 22302153
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Segmented mirror alignment with far-field optimization in the presence of atmospheric turbulence.
    Mehta NC; Allen CW
    Appl Opt; 1993 May; 32(15):2664-73. PubMed ID: 20820428
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Processing wave-front-sensor slope measurements using artificial neural networks.
    Montera DA; Welsh BM; Roggemann MC; Ruck DW
    Appl Opt; 1996 Jul; 35(21):4238-51. PubMed ID: 21102833
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measuring the power-law exponent of an atmospheric turbulence phase power spectrum with a Shack Hartmann wave-front sensor.
    Rao C; Jiang W; Ling N
    Opt Lett; 1999 Aug; 24(15):1008-10. PubMed ID: 18073923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of scintillation methods for measuring the inner scale of turbulence.
    Hill RJ
    Appl Opt; 1988 Jun; 27(11):2187-93. PubMed ID: 20531736
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of wave-front sensor slope measurements with artificial neural networks.
    Montera DA; Welsh BM; Roggemann MC; Ruck DW
    Appl Opt; 1997 Jan; 36(3):675-81. PubMed ID: 18250726
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of artificial neural networks for Hartmann-sensor lenslet centroid estimation.
    Montera DA; Welsh BM; Roggemann MC; Ruck DW
    Appl Opt; 1996 Oct; 35(29):5747-57. PubMed ID: 21127584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visibility oscillation in a multimode laser interferometer signal and its use in optimizing path lengths.
    Ruden EL; Camacho JF; Lynn AG
    Rev Sci Instrum; 2013 Oct; 84(10):103103. PubMed ID: 24182097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deconvolution from wave front sensing using the frozen flow hypothesis.
    Jefferies SM; Hart M
    Opt Express; 2011 Jan; 19(3):1975-84. PubMed ID: 21369013
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Locating pollutant emission sources with optical remote sensing measurements and an improved one-dimensional radial plume mapping technique.
    Wu CF; Lin SC; Yeh CK
    J Environ Monit; 2012 Apr; 14(4):1203-10. PubMed ID: 22382995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fundamental performance of transverse wind estimator from Shack-Hartmann wave-front sensor measurements.
    Li Z; Li X
    Opt Express; 2018 Apr; 26(9):11859-11876. PubMed ID: 29716103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validation of refractive index structure parameter estimation for certain infrared bands.
    Sivaslıgil M; Erol CB; Polat ÖM; Sarı H
    Appl Opt; 2013 May; 52(14):3127-33. PubMed ID: 23669824
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Atmospheric turbulence chamber for optical transmission experiment: characterization by thermal method.
    Gamo H; Majumdar AK
    Appl Opt; 1978 Dec; 17(23):3755-62. PubMed ID: 20208604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Aggregate behavior of branch points--measuring the number and velocity of atmospheric turbulence layers.
    Oesch DW; Sanchez DJ; Matson CL
    Opt Express; 2010 Oct; 18(21):22377-92. PubMed ID: 20941138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Smart agile lens remote optical sensor for three-dimensional object shape measurements.
    Riza NA; Reza SA
    Appl Opt; 2010 Mar; 49(7):1139-50. PubMed ID: 20197811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Widening the effective field of view of adaptive-optics telescopes by deconvolution from wave-front sensing: average and signal-to-noise ratio performance.
    Roggemann MC; Ellerbroek BL; Rhoadarmer TA
    Appl Opt; 1995 Mar; 34(8):1432-44. PubMed ID: 21037680
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performance analysis of the self-referenced speckle-holography image-reconstruction technique.
    Welsh BM; Vonniederhausern RN
    Appl Opt; 1993 Sep; 32(26):5071-8. PubMed ID: 20856312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fundamental performance comparison of a Hartmann and a shearing interferometer wave-front sensor.
    Welsh BM; Ellerbroek BL; Roggemann MC; Pennington TL
    Appl Opt; 1995 Jul; 34(21):4186-95. PubMed ID: 21052244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measuring wind speeds and turbulence with a wave-front sensor.
    Schöck M; Spillar EJ
    Opt Lett; 1998 Feb; 23(3):150-2. PubMed ID: 18084442
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical remote sensing of atmospheric turbulence: a comparison with simultaneous thermal measurements.
    Vernin J; Barletti R; Ceppatelli G; Paternò L; Righini A; Speroni N
    Appl Opt; 1979 Jan; 18(2):243-7. PubMed ID: 20208695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.