These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 20935931)

  • 1. Signal-to-noise ratio for astronomical imaging by deconvolution from wave-front sensing.
    Roggemann MC; Welsh BM
    Appl Opt; 1994 Aug; 33(23):5400-14. PubMed ID: 20935931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biased estimators and object-spectrum estimation in the method of deconvolution from wave-front sensing.
    Roggemann MC; Welsh BM; Devey J
    Appl Opt; 1994 Aug; 33(24):5754-63. PubMed ID: 20935977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal-to-noise comparison of deconvolution from wave-front sensing with traditional linear and speckle image reconstruction.
    Welsh BM; Roggemann MC
    Appl Opt; 1995 Apr; 34(12):2111-9. PubMed ID: 21037757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance analysis of the self-referenced speckle-holography image-reconstruction technique.
    Welsh BM; Vonniederhausern RN
    Appl Opt; 1993 Sep; 32(26):5071-8. PubMed ID: 20856312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental measurements of estimator bias and the signal-to-noise ratio for deconvolution from wave-front sensing.
    Dayton D; Gonglewski J; Rogers S
    Appl Opt; 1997 Jun; 36(17):3895-903. PubMed ID: 18253416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deconvolution from wave front sensing using the frozen flow hypothesis.
    Jefferies SM; Hart M
    Opt Express; 2011 Jan; 19(3):1975-84. PubMed ID: 21369013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Widening the effective field of view of adaptive-optics telescopes by deconvolution from wave-front sensing: average and signal-to-noise ratio performance.
    Roggemann MC; Ellerbroek BL; Rhoadarmer TA
    Appl Opt; 1995 Mar; 34(8):1432-44. PubMed ID: 21037680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compensated speckle imaging: theory and experimental results.
    Roggemann MC; Caudill EL; Tyler DW; Fox MJ; Bokern MA; Matson CL
    Appl Opt; 1994 May; 33(14):3099-110. PubMed ID: 20885674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging performance analysis of adaptive optical telescopes using laser guide stars.
    Welsh BM
    Appl Opt; 1991 Dec; 30(34):5021-30. PubMed ID: 20717316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shack-Hartmann wave front measurements in cortical tissue for deconvolution of large three-dimensional mosaic transmitted light brightfield micrographs.
    Oberlaender M; Broser PJ; Sakmann B; Hippler S
    J Microsc; 2009 Feb; 233(2):275-89. PubMed ID: 19220694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fundamental performance comparison of a Hartmann and a shearing interferometer wave-front sensor.
    Welsh BM; Ellerbroek BL; Roggemann MC; Pennington TL
    Appl Opt; 1995 Jul; 34(21):4186-95. PubMed ID: 21052244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear reconstruction of compensated images: theory and experimental results.
    Roggemann MC; Tyler DW; Bilmont MF
    Appl Opt; 1992 Dec; 31(35):7429-41. PubMed ID: 20802619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-definition mapping of neural activity using voltage-sensitive dyes.
    Cinelli AR
    Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remote sensing of atmospheric turbulence and transverse winds from wave-front slope measurements from crossed optical paths.
    Welsh BM; Koeffler SC
    Appl Opt; 1994 Jul; 33(21):4880-8. PubMed ID: 20935864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constrained deconvolution from wavefront sensing using the frozen flow hypothesis and complex wavelet regularization.
    Ren Z; Liu J; Liang Y
    Appl Opt; 2022 Jan; 61(2):410-416. PubMed ID: 35200877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lensless object scanning holography for two-dimensional mirror-like and diffuse reflective objects.
    Micó V; Ferreira C; García J
    Appl Opt; 2013 Sep; 52(25):6390-400. PubMed ID: 24085102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensing refractive-turbulence profiles (C(n)(2)) using wave front phase measurements from multiple reference sources.
    Welsh BM
    Appl Opt; 1992 Dec; 31(34):7283-91. PubMed ID: 20802595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image speckle contrast reduction resulting from integrative synthetic aperture imaging.
    Sica L
    Appl Opt; 1992 Jan; 31(1):120-5. PubMed ID: 20717381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speckle imaging of satellites at the U.S. Air Force Maui Optical Station.
    Lawrence TW; Goodman DM; Johansson EM; Fitch JP
    Appl Opt; 1992 Oct; 31(29):6307-21. PubMed ID: 20733846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems.
    Correia CM; Teixeira J
    J Opt Soc Am A Opt Image Sci Vis; 2014 Dec; 31(12):2763-74. PubMed ID: 25606767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.