BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 20935974)

  • 1. Model for the interpretation of hyperspectral remote-sensing reflectance.
    Lee Z; Carder KL; Hawes SK; Steward RG; Peacock TG; Davis CO
    Appl Opt; 1994 Aug; 33(24):5721-32. PubMed ID: 20935974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Bio-optical model of total suspended matter based on reflectance in the near infrared wave band for case-II waters].
    Xu JP; Zhang B; Song KS; Wang ZM; Duan HT; Chen M; Yang F; Li FX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct; 28(10):2273-7. PubMed ID: 19123387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-optical properties and ocean color algorithms for coastal waters influenced by the Mississippi River during a cold front.
    D'Sa EJ; Miller RL; Del Castillo C
    Appl Opt; 2006 Oct; 45(28):7410-28. PubMed ID: 16983431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid approach to estimate chromophoric dissolved organic matter in turbid estuaries from satellite measurements: a case study for Tampa Bay.
    Le C; Hu C
    Opt Express; 2013 Aug; 21(16):18849-71. PubMed ID: 23938799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inherent optical properties and satellite retrieval of chlorophyll concentration in the lagoon and open ocean waters of New Caledonia.
    Dupouy C; Neveux J; Ouillon S; Frouin R; Murakami H; Hochard S; Dirberg G
    Mar Pollut Bull; 2010; 61(7-12):503-18. PubMed ID: 20688344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ spectral response of the Arabian Gulf and Sea of Oman coastal waters to bio-optical properties.
    Al Shehhi MR; Gherboudj I; Ghedira H
    J Photochem Photobiol B; 2017 Oct; 175():235-243. PubMed ID: 28915493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Fluorescence peak shift corresponding to high chlorophyll concentrations in inland water].
    Duan HT; Ma RH; Zhang YZ; Zhang B
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jan; 29(1):161-4. PubMed ID: 19385229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands.
    Gilerson AA; Gitelson AA; Zhou J; Gurlin D; Moses W; Ioannou I; Ahmed SA
    Opt Express; 2010 Nov; 18(23):24109-25. PubMed ID: 21164758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Quantitative analysis of chlorophyll-a reflectance spectrum in red spectral region of water].
    Ma WD; Xing QG; Zhang YZ; Shi P; Liu YL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Feb; 30(2):313-7. PubMed ID: 20384114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retrieval of chlorophyll from remote-sensing reflectance in the china seas.
    He MX; Liu ZS; Du KP; Li LP; Chen R; Carder KL; Lee ZP
    Appl Opt; 2000 May; 39(15):2467-74. PubMed ID: 18345161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the colored dissolved organic matter in coastal waters from ocean color remote sensing.
    Loisel H; Vantrepotte V; Dessailly D; Mériaux X
    Opt Express; 2014 Jun; 22(11):13109-24. PubMed ID: 24921507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical assessment of particle size and composition in the Santa Barbara Channel, California.
    Kostadinov TS; Siegel DA; Maritorena S; Guillocheau N
    Appl Opt; 2012 Jun; 51(16):3171-89. PubMed ID: 22695548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance.
    Wei J; Lee Z; Ondrusek M; Mannino A; Tzortziou M; Armstrong R
    J Geophys Res Oceans; 2016 Mar; 121(3):1953-1969. PubMed ID: 29201583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method to derive ocean absorption coefficients from remote-sensing reflectance.
    Lee ZP; Carder KL; Peacock TG; Davis CO; Mueller JL
    Appl Opt; 1996 Jan; 35(3):453-62. PubMed ID: 21069030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of water colour using AVIRIS imagery to assess the potential for an operational monitoring capability in the Pamlico Sound Estuary, USA.
    Ross SL; Joseph FK; Hans WP; John JS; Benjamin LP; Tom G; John GL; Thomas HM; Christopher PB
    Int J Remote Sens; 2009 Jul; 30(13-14):3291-3314. PubMed ID: 25937680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced POLYMER atmospheric correction algorithm for water-leaving radiance retrievals from hyperspectral/multispectral remote sensing data in inland and coastal waters.
    Karthick M; Shanmugam P; He X
    Opt Express; 2024 Feb; 32(5):7659-7681. PubMed ID: 38439443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplatform optical monitoring of eutrophication in temporally and spatially variable lakes.
    Vos RJ; Hakvoort JH; Jordans RW; Ibelings BW
    Sci Total Environ; 2003 Aug; 312(1-3):221-43. PubMed ID: 12873412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements.
    Hoge FE; Vodacek A; Swift RN; Yungel JK; Blough NV
    Appl Opt; 1995 Oct; 34(30):7032-8. PubMed ID: 21060564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of underwater visibility in coastal and inland waters using remote sensing data.
    Kulshreshtha A; Shanmugam P
    Environ Monit Assess; 2017 Apr; 189(4):199. PubMed ID: 28361489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.