BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 20936110)

  • 1. Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance.
    Moore N; Lyle S
    J Oncol; 2011; 2011():. PubMed ID: 20936110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory Role of Quiescence in the Biological Function of Cancer Stem Cells.
    Lee SH; Reed-Newman T; Anant S; Ramasamy TS
    Stem Cell Rev Rep; 2020 Dec; 16(6):1185-1207. PubMed ID: 32894403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor Dormancy and Slow-Cycling Cancer Cells.
    Davis JE; Kirk J; Ji Y; Tang DG
    Adv Exp Med Biol; 2019; 1164():199-206. PubMed ID: 31576550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow-Cycling Cells in Glioblastoma: A Specific Population in the Cellular Mosaic of Cancer Stem Cells.
    Yang C; Tian G; Dajac M; Doty A; Wang S; Lee JH; Rahman M; Huang J; Reynolds BA; Sarkisian MR; Mitchell D; Deleyrolle LP
    Cancers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pre-existing population of ZEB2
    Francescangeli F; Contavalli P; De Angelis ML; Careccia S; Signore M; Haas TL; Salaris F; Baiocchi M; Boe A; Giuliani A; Tcheremenskaia O; Pagliuca A; Guardiola O; Minchiotti G; Colace L; Ciardi A; D'Andrea V; La Torre F; Medema J; De Maria R; Zeuner A
    J Exp Clin Cancer Res; 2020 Jan; 39(1):2. PubMed ID: 31910865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and functional analysis of a slow-cycling subpopulation in colorectal cancer enriched by cell cycle inducer combined chemotherapy.
    Wu FH; Mu L; Li XL; Hu YB; Liu H; Han LT; Gong JP
    Oncotarget; 2017 Oct; 8(45):78466-78479. PubMed ID: 29108242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quiescent stem cells in intestinal homeostasis and cancer.
    Roth S; Fodde R
    Cell Commun Adhes; 2011 Jun; 18(3):33-44. PubMed ID: 21913875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SET Domain-Containing Protein 4 Epigenetically Controls Breast Cancer Stem Cell Quiescence.
    Ye S; Ding YF; Jia WH; Liu XL; Feng JY; Zhu Q; Cai SL; Yang YS; Lu QY; Huang XT; Yang JS; Jia SN; Ding GP; Wang YH; Zhou JJ; Chen YD; Yang WJ
    Cancer Res; 2019 Sep; 79(18):4729-4743. PubMed ID: 31308046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of Proliferative and Quiescent Stem Cells in Liver Homeostasis and Injury.
    Cao W; Chen K; Bolkestein M; Yin Y; Verstegen MMA; Bijvelds MJC; Wang W; Tuysuz N; Ten Berge D; Sprengers D; Metselaar HJ; van der Laan LJW; Kwekkeboom J; Smits R; Peppelenbosch MP; Pan Q
    Gastroenterology; 2017 Oct; 153(4):1133-1147. PubMed ID: 28716722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancer Stem Cells and Stem Cell Tumors in Drosophila.
    Singh SR; Aggarwal P; Hou SX
    Adv Exp Med Biol; 2019; 1167():175-190. PubMed ID: 31520355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stem cell programs in cancer initiation, progression, and therapy resistance.
    Huang T; Song X; Xu D; Tiek D; Goenka A; Wu B; Sastry N; Hu B; Cheng SY
    Theranostics; 2020; 10(19):8721-8743. PubMed ID: 32754274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of targeted therapy on recruited cancer stem cells in a head and neck carcinoma model.
    Marcu LG; Marcu D
    Cell Prolif; 2017 Dec; 50(6):. PubMed ID: 28857306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer Stem Cell Hypothesis for Therapeutic Innovation in Clinical Oncology? Taking the Root Out, Not Chopping the Leaf.
    Dzobo K; Senthebane DA; Rowe A; Thomford NE; Mwapagha LM; Al-Awwad N; Dandara C; Parker MI
    OMICS; 2016 Dec; 20(12):681-691. PubMed ID: 27930094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancer Stem Cell Metabolism and Potential Therapeutic Targets.
    Snyder V; Reed-Newman TC; Arnold L; Thomas SM; Anant S
    Front Oncol; 2018; 8():203. PubMed ID: 29922594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD44+ slow-cycling tumor cell expansion is triggered by cooperative actions of Wnt and prostaglandin E2 in gastric tumorigenesis.
    Ishimoto T; Oshima H; Oshima M; Kai K; Torii R; Masuko T; Baba H; Saya H; Nagano O
    Cancer Sci; 2010 Mar; 101(3):673-8. PubMed ID: 20028388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Cell Sequencing Reveals that DBI is the Key Gene and Potential Therapeutic Target in Quiescent Bladder Cancer Stem Cells.
    Yao J; Liu Y; Yang J; Li M; Li S; Zhang B; Yang R; Zhang Y; Cui X; Feng C
    Front Genet; 2022; 13():904536. PubMed ID: 35769986
    [No Abstract]   [Full Text] [Related]  

  • 17. [Cell cycle regulation in cancer stem cells].
    Takeishi S
    Nihon Rinsho; 2015 May; 73(5):779-83. PubMed ID: 25985630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemotherapy resistance and stemness in mitotically quiescent human breast cancer cells identified by fluorescent dye retention.
    Quayle LA; Ottewell PD; Holen I
    Clin Exp Metastasis; 2018 Dec; 35(8):831-846. PubMed ID: 30377878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breast Cancer Stem Cells as Drivers of Tumor Chemoresistance, Dormancy and Relapse: New Challenges and Therapeutic Opportunities.
    De Angelis ML; Francescangeli F; Zeuner A
    Cancers (Basel); 2019 Oct; 11(10):. PubMed ID: 31619007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer Stem Cells and the Slow Cycling Phenotype: How to Cut the Gordian Knot Driving Resistance to Therapy in Melanoma.
    Fattore L; Mancini R; Ciliberto G
    Cancers (Basel); 2020 Nov; 12(11):. PubMed ID: 33202944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.