These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 20936227)

  • 1. Magnetic resonance imaging methods for in situ studies in heterogeneous catalysis.
    Lysova AA; Koptyug IV
    Chem Soc Rev; 2010 Dec; 39(12):4585-601. PubMed ID: 20936227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared and Raman imaging of heterogeneous catalysts.
    Stavitski E; Weckhuysen BM
    Chem Soc Rev; 2010 Dec; 39(12):4615-25. PubMed ID: 20938559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic resonance imaging of chemistry.
    Britton MM
    Chem Soc Rev; 2010 Nov; 39(11):4036-43. PubMed ID: 20508883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional MRI and NMR spectroscopy of an operating gas-liquid-solid catalytic reactor.
    Koptyug IV; Lysova AA; Kulikov AV; Kirillov VA; Parmon VN; Sagdeev RZ
    Magn Reson Imaging; 2005 Feb; 23(2):221-5. PubMed ID: 15833616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring catalytic solid/liquid interfaces by in situ attenuated total reflection infrared spectroscopy.
    Andanson JM; Baiker A
    Chem Soc Rev; 2010 Dec; 39(12):4571-84. PubMed ID: 20890489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hard and soft X-ray microscopy and tomography in catalysis: bridging the different time and length scales.
    Grunwaldt JD; Schroer CG
    Chem Soc Rev; 2010 Dec; 39(12):4741-53. PubMed ID: 20978666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Profiling physicochemical changes within catalyst bodies during preparation: new insights from invasive and noninvasive microspectroscopic studies.
    Espinosa-Alonso L; Beale AM; Weckhuysen BM
    Acc Chem Res; 2010 Sep; 43(9):1279-88. PubMed ID: 20604550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrared Spectroscopy and Catalysis Research: Infrared spectra of adsorbed molecules provide important information in the study of catalysis.
    Eischens RP
    Science; 1964 Oct; 146(3643):486-93. PubMed ID: 17806797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales.
    Weckhuysen BM
    Angew Chem Int Ed Engl; 2009; 48(27):4910-43. PubMed ID: 19536746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining in situ characterization methods in one set-up: looking with more eyes into the intricate chemistry of the synthesis and working of heterogeneous catalysts.
    Bentrup U
    Chem Soc Rev; 2010 Dec; 39(12):4718-30. PubMed ID: 20959916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmaceutical applications of magnetic resonance imaging (MRI).
    Richardson JC; Bowtell RW; Mäder K; Melia CD
    Adv Drug Deliv Rev; 2005 Jun; 57(8):1191-209. PubMed ID: 15935869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ 13C DEPT-MRI as a tool to spatially resolve chemical conversion and selectivity of a heterogeneous catalytic reaction occurring in a fixed-bed reactor.
    Akpa BS; Mantle MD; Sederman AJ; Gladden LF
    Chem Commun (Camb); 2005 Jun; (21):2741-3. PubMed ID: 15917939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-state nuclear magnetic resonance investigations of the nature, property, and activity of acid sites on solid catalysts.
    Jiang Y; Huang J; Dai W; Hunger M
    Solid State Nucl Magn Reson; 2011; 39(3-4):116-41. PubMed ID: 21592743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ spectroscopic investigation of heterogeneous catalysts and reaction media at high pressure.
    Grunwaldt JD; Baiker A
    Phys Chem Chem Phys; 2005 Oct; 7(20):3526-39. PubMed ID: 16294227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting.
    Roeffaers MB; Sels BF; Uji-I H; De Schryver FC; Jacobs PA; De Vos DE; Hofkens J
    Nature; 2006 Feb; 439(7076):572-5. PubMed ID: 16452976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic reactor for operando spatially resolved structure-activity profiling using high-energy X-ray diffraction.
    Wollak B; Espinoza D; Dippel AC; Sturm M; Vrljic F; Gutowski O; Nielsen IG; Sheppard TL; Korup O; Horn R
    J Synchrotron Radiat; 2023 May; 30(Pt 3):571-581. PubMed ID: 37042662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iridium Ziegler-type hydrogenation catalysts made from [(1,5-COD)Ir(mu-O2C8H15)](2) and AlEt3: spectroscopic and kinetic evidence for the Ir(n) species present and for nanoparticles as the fastest catalyst.
    Alley WM; Hamdemir IK; Wang Q; Frenkel AI; Li L; Yang JC; Menard LD; Nuzzo RG; Ozkar S; Johnson KA; Finke RG
    Inorg Chem; 2010 Sep; 49(17):8131-47. PubMed ID: 20681520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A versatile in situ spectroscopic cell for fluorescence/transmission EXAFS and X-ray diffraction of heterogeneous catalysts in gas and liquid phase.
    Hannemann S; Casapu M; Grunwaldt JD; Haider P; Trüssel P; Baiker A; Welter E
    J Synchrotron Radiat; 2007 Jul; 14(Pt 4):345-54. PubMed ID: 17587660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The design and testing of kinetically-appropriate operando spectroscopic cells for investigating heterogeneous catalytic reactions.
    Meunier FC
    Chem Soc Rev; 2010 Dec; 39(12):4602-14. PubMed ID: 20936228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology.
    Cheon J; Lee JH
    Acc Chem Res; 2008 Dec; 41(12):1630-40. PubMed ID: 18698851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.