These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 20936227)

  • 21. Identifying reaction intermediates and catalytic active sites through in situ characterization techniques.
    Foster AJ; Lobo RF
    Chem Soc Rev; 2010 Dec; 39(12):4783-93. PubMed ID: 21038051
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In situ synthesis of mixed-valent manganese oxide nanocrystals: an in situ synchrotron X-ray diffraction study.
    Shen XF; Ding YS; Hanson JC; Aindow M; Suib SL
    J Am Chem Soc; 2006 Apr; 128(14):4570-1. PubMed ID: 16594683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions.
    Hess C
    Chem Soc Rev; 2021 Mar; 50(5):3519-3564. PubMed ID: 33501926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy.
    Blasco T
    Chem Soc Rev; 2010 Dec; 39(12):4685-702. PubMed ID: 20976339
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface X-ray studies of catalytic clean technologies.
    Lee AF; Prabhakaran V; Wilson K
    Chem Commun (Camb); 2010 Jun; 46(22):3827-42. PubMed ID: 20422076
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New advances in the use of infrared absorption spectroscopy for the characterization of heterogeneous catalytic reactions.
    Zaera F
    Chem Soc Rev; 2014 Nov; 43(22):7624-63. PubMed ID: 24424375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vibrational spectroscopy: a 'vanishing' discipline?
    Meier RJ
    Chem Soc Rev; 2005 Sep; 34(9):743-52. PubMed ID: 16100614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noninvasive in situ visualization of supported catalyst preparations using multinuclear magnetic resonance imaging.
    Lysova AA; Koptyug IV; Sagdeev RZ; Parmon VN; Bergwerff JA; Weckhuysen BM
    J Am Chem Soc; 2005 Aug; 127(34):11916-7. PubMed ID: 16117511
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pulsed-field gradient nuclear magnetic resonance study of transport properties of fluid catalytic cracking catalysts.
    Kortunov P; Vasenkov S; Kärger J; Fé Elía M; Perez M; Stöcker M; Papadopoulos GK; Theodorou D; Drescher B; McElhiney G; Bernauer B; Krystl V; Kocirik M; Zikanova A; Jirglova H; Berger C; Gläser R; Weitkamp J; Hansen EW
    Magn Reson Imaging; 2005 Feb; 23(2):233-7. PubMed ID: 15833618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SpaciMS: spatial and temporal operando resolution of reactions within catalytic monoliths.
    Sá J; Fernandes DL; Aiouache F; Goguet A; Hardacre C; Lundie D; Naeem W; Partridge WP; Stere C
    Analyst; 2010 Sep; 135(9):2260-72. PubMed ID: 20697617
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Non-invasive in vivo evaluation of in situ forming PLGA implants by benchtop magnetic resonance imaging (BT-MRI) and EPR spectroscopy.
    Kempe S; Metz H; Pereira PG; Mäder K
    Eur J Pharm Biopharm; 2010 Jan; 74(1):102-8. PubMed ID: 19545625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical imaging of catalytic solids with synchrotron radiation.
    Beale AM; Jacques SD; Weckhuysen BM
    Chem Soc Rev; 2010 Dec; 39(12):4656-72. PubMed ID: 20978688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-resolved fluorescence resonance energy transfer: a versatile tool for the analysis of nucleic acids.
    Klostermeier D; Millar DP
    Biopolymers; 2001-2002; 61(3):159-79. PubMed ID: 11987179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New reactor dedicated to in operando studies of model catalysts by means of surface x-ray diffraction and grazing incidence small angle x-ray scattering.
    Saint-Lager MC; Bailly A; Dolle P; Baudoing-Savois R; Taunier P; Garaudée S; Cuccaro S; Douillet S; Geaymond O; Perroux G; Tissot O; Micha JS; Ulrich O; Rieutord F
    Rev Sci Instrum; 2007 Aug; 78(8):083902. PubMed ID: 17764330
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetic resonance imaging and spectroscopy methods for molecular imaging.
    Vande Velde G; Baekelandt V; Dresselaers T; Himmelreich U
    Q J Nucl Med Mol Imaging; 2009 Dec; 53(6):565-85. PubMed ID: 20016450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parahydrogen-induced polarization in heterogeneous catalytic processes.
    Kovtunov KV; Zhivonitko VV; Skovpin IV; Barskiy DA; Koptyug IV
    Top Curr Chem; 2013; 338():123-80. PubMed ID: 23097028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monitoring supported-nanocluster heterogeneous catalyst formation: product and kinetic evidence for a 2-step, nucleation and autocatalytic growth mechanism of Pt(0)n formation from H2PtCl6 on Al2O3 or TiO2.
    Mondloch JE; Yan X; Finke RG
    J Am Chem Soc; 2009 May; 131(18):6389-96. PubMed ID: 19379011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reactor for in situ measurements of spatially resolved kinetic data in heterogeneous catalysis.
    Horn R; Korup O; Geske M; Zavyalova U; Oprea I; Schlögl R
    Rev Sci Instrum; 2010 Jun; 81(6):064102. PubMed ID: 20590252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis.
    Debecker DP; Gaigneaux EM; Busca G
    Chemistry; 2009; 15(16):3920-35. PubMed ID: 19301329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solid-state 27Al MRI and NMR thermometry for catalytic applications with conventional (liquids) MRI instrumentation and techniques.
    Koptyug IV; Sagdeev DR; Gerkema E; Van As H; Sagdeev RZ
    J Magn Reson; 2005 Jul; 175(1):21-9. PubMed ID: 15949745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.