BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 20936247)

  • 1. Controlled microparticle manipulation employing low frequency alternating electric fields in an array of insulators.
    Baylon-Cardiel JL; Jesús-Pérez NM; Chávez-Santoscoy AV; Lapizco-Encinas BH
    Lab Chip; 2010 Dec; 10(23):3235-42. PubMed ID: 20936247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA manipulation by means of insulator-based dielectrophoresis employing direct current electric fields.
    Gallo-Villanueva RC; Rodríguez-López CE; Díaz-de-la-Garza RI; Reyes-Betanzo C; Lapizco-Encinas BH
    Electrophoresis; 2009 Dec; 30(24):4195-205. PubMed ID: 20013902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectrophoretic manipulation and separation of microparticles using curved microelectrodes.
    Khoshmanesh K; Zhang C; Tovar-Lopez FJ; Nahavandi S; Baratchi S; Kalantar-zadeh K; Mitchell A
    Electrophoresis; 2009 Nov; 30(21):3707-17. PubMed ID: 19810028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein manipulation with insulator-based dielectrophoresis and direct current electric fields.
    Lapizco-Encinas BH; Ozuna-Chacón S; Rito-Palomares M
    J Chromatogr A; 2008 Oct; 1206(1):45-51. PubMed ID: 18571183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic microparticle manipulation with an electroosmotic flow gradient in low-frequency alternating current dielectrophoresis.
    Gencoglu A; Olney D; LaLonde A; Koppula KS; Lapizco-Encinas BH
    Electrophoresis; 2014 Feb; 35(2-3):362-73. PubMed ID: 24166858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of electrokinetic mobility of microparticles in order to improve dielectrophoretic concentration.
    Martínez-López JI; Moncada-Hernández H; Baylon-Cardiel JL; Martínez-Chapa SO; Rito-Palomares M; Lapizco-Encinas BH
    Anal Bioanal Chem; 2009 May; 394(1):293-302. PubMed ID: 19190896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional focusing of particles using negative dielectrophoretic force in a microfluidic chip with insulating microstructures and dual planar microelectrodes.
    Jen CP; Weng CH; Huang CT
    Electrophoresis; 2011 Sep; 32(18):2428-35. PubMed ID: 21874653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of mixtures of particles in a multipart microdevice employing insulator-based dielectrophoresis.
    Gallo-Villanueva RC; Pérez-González VH; Davalos RV; Lapizco-Encinas BH
    Electrophoresis; 2011 Sep; 32(18):2456-65. PubMed ID: 21874656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators.
    Lapizco-Encinas BH; Simmons BA; Cummings EB; Fintschenko Y
    Anal Chem; 2004 Mar; 76(6):1571-9. PubMed ID: 15018553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of trapping zones in an insulator-based dielectrophoretic device.
    Baylon-Cardiel JL; Lapizco-Encinas BH; Reyes-Betanzo C; Chávez-Santoscoy AV; Martínez-Chapa SO
    Lab Chip; 2009 Oct; 9(20):2896-901. PubMed ID: 19789741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A continuous DC-insulator dielectrophoretic sorter of microparticles.
    Srivastava SK; Baylon-Cardiel JL; Lapizco-Encinas BH; Minerick AR
    J Chromatogr A; 2011 Apr; 1218(13):1780-9. PubMed ID: 21338990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: Effect of particle size and shape.
    Saucedo-Espinosa MA; Lapizco-Encinas BH
    Electrophoresis; 2015 May; 36(9-10):1086-97. PubMed ID: 25487065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of miniature supersonic nozzles for microparticle acceleration: a numerical study.
    Liu Y
    IEEE Trans Biomed Eng; 2007 Oct; 54(10):1814-21. PubMed ID: 17926679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel concept of dielectrophoretic engine oil filter.
    Shen Y; Elele E; Khusid B
    Electrophoresis; 2011 Sep; 32(18):2559-68. PubMed ID: 21853447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance characterization of an insulator-based dielectrophoretic microdevice.
    Ozuna-Chacón S; Lapizco-Encinas BH; Rito-Palomares M; Martínez-Chapa SO; Reyes-Betanzo C
    Electrophoresis; 2008 Aug; 29(15):3115-22. PubMed ID: 18654979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water.
    Lapizco-Encinas BH; Simmons BA; Cummings EB; Fintschenko Y
    Electrophoresis; 2004 Jun; 25(10-11):1695-704. PubMed ID: 15188259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of direct current dielectrophoresis on the trajectory of a non-conducting colloidal sphere in a bent pore.
    House DL; Luo H
    Electrophoresis; 2011 Nov; 32(22):3277-85. PubMed ID: 22028275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DC-dielectrophoretic separation of microparticles using an oil droplet obstacle.
    Barbulovic-Nad I; Xuan X; Lee JS; Li D
    Lab Chip; 2006 Feb; 6(2):274-9. PubMed ID: 16450038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous particle separation based on electrical properties using alternating current dielectrophoresis.
    Cetin B; Li D
    Electrophoresis; 2009 Sep; 30(18):3124-33. PubMed ID: 19764062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.