BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 20936247)

  • 21. Continuous manipulation and separation of particles using combined obstacle- and curvature-induced direct current dielectrophoresis.
    Li M; Li S; Li W; Wen W; Alici G
    Electrophoresis; 2013 Apr; 34(7):952-60. PubMed ID: 23436345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polarization behavior of polystyrene particles under direct current and low-frequency (<1 kHz) electric fields in dielectrophoretic systems.
    Saucedo-Espinosa MA; Rauch MM; LaLonde A; Lapizco-Encinas BH
    Electrophoresis; 2016 Feb; 37(4):635-44. PubMed ID: 26531799
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analytical solutions and validation of electric field and dielectrophoretic force in a bio-microfluidic channel.
    Nerguizian V; Alazzam A; Roman D; Stiharu I; Burnier M
    Electrophoresis; 2012 Feb; 33(3):426-35. PubMed ID: 22287173
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lab-on-a-chip device for continuous particle and cell separation based on electrical properties via alternating current dielectrophoresis.
    Cetin B; Li D
    Electrophoresis; 2010 Sep; 31(18):3035-43. PubMed ID: 20872609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes.
    Chu H; Doh I; Cho YH
    Lab Chip; 2009 Mar; 9(5):686-91. PubMed ID: 19224018
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dielectrophoretic manipulation of particle mixtures employing asymmetric insulating posts.
    Saucedo-Espinosa MA; LaLonde A; Gencoglu A; Romero-Creel MF; Dolas JR; Lapizco-Encinas BH
    Electrophoresis; 2016 Jan; 37(2):282-90. PubMed ID: 26497819
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dielectrophoretic focusing of particles in a microchannel constriction using DC-biased AC flectric fields.
    Zhu J; Xuan X
    Electrophoresis; 2009 Aug; 30(15):2668-75. PubMed ID: 19621378
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lateral displacement as a function of particle size using a piecewise curved planar interdigitated electrode array.
    Han KH; Han SI; Frazier AB
    Lab Chip; 2009 Oct; 9(20):2958-64. PubMed ID: 19789750
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrokinetic biased deterministic lateral displacement: scaling analysis and simulations.
    Calero V; García-Sánchez P; Ramos A; Morgan H
    J Chromatogr A; 2020 Jul; 1623():461151. PubMed ID: 32505271
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Manipulation and characterization of red blood cells with alternating current fields in microdevices.
    Minerick AR; Zhou R; Takhistov P; Chang HC
    Electrophoresis; 2003 Nov; 24(21):3703-17. PubMed ID: 14613196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frequency bandwidth limitation of external pulse electric field in microchannels. Applications to analyte velocity modulation detections.
    Wang SC
    Biosens Bioelectron; 2004 Jul; 20(1):139-42. PubMed ID: 15142587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of insulating posts geometry on particle manipulation in insulator based dielectrophoretic devices.
    Lalonde A; Gencoglu A; Romero-Creel MF; Koppula KS; Lapizco-Encinas BH
    J Chromatogr A; 2014 May; 1344():99-108. PubMed ID: 24767832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transient electrophoretic motion of a charged particle through a converging-diverging microchannel: effect of direct current-dielectrophoretic force.
    Ai Y; Joo SW; Jiang Y; Xuan X; Qian S
    Electrophoresis; 2009 Jul; 30(14):2499-506. PubMed ID: 19639572
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Finite element modeling of a microparticle manipulator.
    Neild A; Oberti S; Haake A; Dual J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e455-60. PubMed ID: 16797643
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of particle capture in a sawtooth patterned insulating electrokinetic microfluidic device.
    Staton SJ; Chen KP; Taylor TJ; Pacheco JR; Hayes MA
    Electrophoresis; 2010 Nov; 31(22):3634-41. PubMed ID: 21077235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrophoretic size separation of particles in a periodically constricted microchannel.
    Cheng KL; Sheng YJ; Jiang S; Tsao HK
    J Chem Phys; 2008 Mar; 128(10):101101. PubMed ID: 18345869
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrokinetic particle entry into microchannels.
    Zhu J; Hu G; Xuan X
    Electrophoresis; 2012 Mar; 33(6):916-22. PubMed ID: 22528411
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aligning fast alternating current electroosmotic flow fields and characteristic frequencies with dielectrophoretic traps to achieve rapid bacteria detection.
    Gagnon Z; Chang HC
    Electrophoresis; 2005 Oct; 26(19):3725-37. PubMed ID: 16136529
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.
    Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK
    Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Double-layer polarization of a non-conducting particle in an alternating current field with applications to dielectrophoresis.
    Zhao H
    Electrophoresis; 2011 Sep; 32(17):2232-44. PubMed ID: 21823130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.