BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 20936560)

  • 1. Deriving the aquatic predicted no-effect concentrations (PNECs) of three chlorophenols for the Taihu Lake, China.
    Lei BL; Huang SB; Jin XW; Wang Z
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Dec; 45(14):1823-31. PubMed ID: 20936560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Derivation of predicted no effect concentrations (PNEC) for 2,4,6-trichlorophenol based on Chinese resident species.
    Jin X; Zha J; Xu Y; Giesy JP; Richardson KL; Wang Z
    Chemosphere; 2012 Jan; 86(1):17-23. PubMed ID: 21955353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Comparison of aquatic predicted no-effect concentrations (PNECs) pentachlorophenol derived from different assessment approaches].
    Lei BL; Wen Y; Wang YP; Kang J; Liu Q
    Huan Jing Ke Xue; 2013 Jun; 34(6):2335-43. PubMed ID: 23947053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Derivation of aquatic predicted no-effect concentration (PNEC) for 2,4-dichlorophenol: comparing native species data with non-native species data.
    Jin X; Zha J; Xu Y; Wang Z; Kumaran SS
    Chemosphere; 2011 Sep; 84(10):1506-11. PubMed ID: 21543105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Approach to Derive the Predicted No-Effect Concentration (PNEC) of Benzophenone-3 (BP-3) Using the Species Sensitivity Distribution (SSD) Method: Suggestion of a New PNEC Value for BP-3.
    Jung JW; Kang JS; Choi J; Park JW
    Int J Environ Res Public Health; 2021 Mar; 18(7):. PubMed ID: 33807469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deriving predicted no-effect concentrations (PNECs) for emerging contaminants in the river Po, Italy, using three approaches: Assessment factor, species sensitivity distribution and AQUATOX ecosystem modelling.
    Gredelj A; Barausse A; Grechi L; Palmeri L
    Environ Int; 2018 Oct; 119():66-78. PubMed ID: 29935425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quinolones antibiotics in the Baiyangdian Lake, China: Occurrence, distribution, predicted no-effect concentrations (PNECs) and ecological risks by three methods.
    Zhang L; Shen L; Qin S; Cui J; Liu Y
    Environ Pollut; 2020 Jan; 256():113458. PubMed ID: 31706758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-dependent aquatic criteria for 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol.
    Xing L; Liu H; Giesy JP; Yu H
    Sci Total Environ; 2012 Dec; 441():125-31. PubMed ID: 23137977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A tiered ecological risk assessment of three chlorophenols in Chinese surface waters.
    Jin X; Gao J; Zha J; Xu Y; Wang Z; Giesy JP; Richardson KL
    Environ Sci Pollut Res Int; 2012 Jun; 19(5):1544-54. PubMed ID: 22095200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of regional water quality criteria of lead for protecting aquatic organism in Taihu Lake, China.
    Li L; Sun F; Liu Q; Zhao X; Song K
    Ecotoxicol Environ Saf; 2021 Oct; 222():112479. PubMed ID: 34224968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Derivation of the predicted no-effect concentration for organophosphate esters and the associated ecological risk in surface water in China.
    Xing L; Wang L; Xu B; Li A
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19795-19803. PubMed ID: 31089997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicted no-effect concentration and risk assessment for 17-[beta]-estradiol in waters of China.
    Wu F; Fang Y; Li Y; Cui X; Zhang R; Guo G; Giesy JP
    Rev Environ Contam Toxicol; 2014; 228():31-56. PubMed ID: 24162091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An updated weight of evidence approach to the aquatic hazard assessment of Bisphenol A and the derivation a new predicted no effect concentration (Pnec) using a non-parametric methodology.
    Wright-Walters M; Volz C; Talbott E; Davis D
    Sci Total Environ; 2011 Jan; 409(4):676-85. PubMed ID: 21130487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probabilistic ecological risk assessment of heavy metals using the sensitivity of resident organisms in four Korean rivers.
    Park J; Lee S; Lee E; Noh H; Seo Y; Lim H; Shin H; Lee I; Jung H; Na T; Kim SD
    Ecotoxicol Environ Saf; 2019 Nov; 183():109483. PubMed ID: 31362159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probabilistic ecological risk assessment for three chlorophenols in surface waters of China.
    Xing L; Liu H; Giesy JP; Zhang X; Yu H
    J Environ Sci (China); 2012; 24(2):329-34. PubMed ID: 22655396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecological risk assessment of nonylphenol in coastal waters of China based on species sensitivity distribution model.
    Gao P; Li Z; Gibson M; Gao H
    Chemosphere; 2014 Jun; 104():113-9. PubMed ID: 24268347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects assessment: boron compounds in the aquatic environment.
    Schoderboeck L; Mühlegger S; Losert A; Gausterer C; Hornek R
    Chemosphere; 2011 Jan; 82(3):483-7. PubMed ID: 21055789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury toxicity to freshwater organisms: extrapolation using species sensitivity distribution.
    Rodrigues AC; Jesus FT; Fernandes MA; Morgado F; Soares AM; Abreu SN
    Bull Environ Contam Toxicol; 2013 Aug; 91(2):191-6. PubMed ID: 23771310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The toxicity of molybdate to freshwater and marine organisms. II. Effects assessment of molybdate in the aquatic environment under REACH.
    Heijerick DG; Regoli L; Carey S
    Sci Total Environ; 2012 Oct; 435-436():179-87. PubMed ID: 22854089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicted no-effect concentrations determination and ecological risk assessment for benzophenone-type UV filters in aquatic environment.
    Guo Q; Wei D; Zhao H; Du Y
    Environ Pollut; 2020 Jan; 256():113460. PubMed ID: 31685328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.