These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 20936605)

  • 21. Regulation of branched-chain, and sulfur-containing amino acid metabolism by glutathione during ultradian metabolic oscillation of Saccharomyces cerevisiae.
    Sohn HY; Kum EJ; Kwon GS; Jin I; Kuriyama H
    J Microbiol; 2005 Aug; 43(4):375-80. PubMed ID: 16145554
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contributions of multiple basic amino acids in the C-terminal region of yeast ribosomal protein L1 to 5 S rRNA binding and 60 S ribosome stability.
    Yeh LC; Lee JC
    J Mol Biol; 1995 Feb; 246(2):295-307. PubMed ID: 7869381
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Biomass production enriched in intracellular methionine by a mutant of Saccharomyces cerevisiae].
    Albornoz IJ; Sánchez Crispin JA; Moreno R
    Acta Cient Venez; 1993; 44(5):307-11. PubMed ID: 7483968
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiological properties of Saccharomyces cerevisiae from which hexokinase II has been deleted.
    Diderich JA; Raamsdonk LM; Kruckeberg AL; Berden JA; Van Dam K
    Appl Environ Microbiol; 2001 Apr; 67(4):1587-93. PubMed ID: 11282609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel biosynthetic pathway for sulfur amino acids in Cryptococcus neoformans.
    Toh-E A; Ohkusu M; Shimizu K; Ishiwada N; Watanabe A; Kamei K
    Curr Genet; 2018 Jun; 64(3):681-696. PubMed ID: 29159425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improvement of glutathione production by metabolic engineering the sulfate assimilation pathway of Saccharomyces cerevisiae.
    Hara KY; Kiriyama K; Inagaki A; Nakayama H; Kondo A
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1313-9. PubMed ID: 22234534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deletion of the carbonic anhydrase-like gene NCE103 of the yeast Saccharomyces cerevisiae causes an oxygen-sensitive growth defect.
    Götz R; Gnann A; Zimmermann FK
    Yeast; 1999 Jul; 15(10A):855-64. PubMed ID: 10407265
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catabolite repression mutants of Saccharomyces cerevisiae show altered fermentative metabolism as well as cell cycle behavior in glucose-limited chemostat cultures.
    Aon MA; Cortassa S
    Biotechnol Bioeng; 1998 Jul; 59(2):203-13. PubMed ID: 10099331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of control mechanisms for Saccharomyces cerevisiae central metabolic reactions using metabolome data of eight single-gene deletion mutants.
    Shirai T; Matsuda F; Okamoto M; Kondo A
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3569-77. PubMed ID: 23224404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overexpressing GLT1 in gpd1Delta mutant to improve the production of ethanol of Saccharomyces cerevisiae.
    Kong QX; Cao LM; Zhang AL; Chen X
    Appl Microbiol Biotechnol; 2007 Jan; 73(6):1382-6. PubMed ID: 17021874
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The IRC7 gene encodes cysteine desulphydrase activity and confers on yeast the ability to grow on cysteine as a nitrogen source.
    Santiago M; Gardner RC
    Yeast; 2015 Jul; 32(7):519-32. PubMed ID: 25871637
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Rpn4p is a positive and negative transcriptional regulator of the ubiquitin-proteasome system].
    Karpov DS; Osipov SA; Preobrazhenskaia OV; Karpov VL
    Mol Biol (Mosk); 2008; 42(3):518-25. PubMed ID: 18702311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decreasing acetic acid accumulation by a glycerol overproducing strain of Saccharomyces cerevisiae by deleting the ALD6 aldehyde dehydrogenase gene.
    Eglinton JM; Heinrich AJ; Pollnitz AP; Langridge P; Henschke PA; de Barros Lopes M
    Yeast; 2002 Mar; 19(4):295-301. PubMed ID: 11870853
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ECM17-dependent methionine/cysteine biosynthesis contributes to biofilm formation in Candida albicans.
    Li DD; Wang Y; Dai BD; Li XX; Zhao LX; Cao YB; Yan L; Jiang YY
    Fungal Genet Biol; 2013 Feb; 51():50-9. PubMed ID: 23246394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of amino acids in the regulation of hydrogen sulfide production during ultradian respiratory oscillation of Saccharomyces cerevisiae.
    Sohn H; Kuriyama H
    Arch Microbiol; 2001 Jul; 176(1-2):69-78. PubMed ID: 11479705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overexpression of the active diacylglycerol acyltransferase variant transforms Saccharomyces cerevisiae into an oleaginous yeast.
    Kamisaka Y; Kimura K; Uemura H; Yamaoka M
    Appl Microbiol Biotechnol; 2013 Aug; 97(16):7345-55. PubMed ID: 23613035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Effect of SSU1 multi-copy expression on Saccharomyces cerevisiae sulphite production].
    Chen Y; Shen S; Wang Y; Xiao D
    Wei Sheng Wu Xue Bao; 2008 Dec; 48(12):1609-15. PubMed ID: 19271535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cysteine is essential for transcriptional regulation of the sulfur assimilation genes in Saccharomyces cerevisiae.
    Hansen J; Johannesen PF
    Mol Gen Genet; 2000 Apr; 263(3):535-42. PubMed ID: 10821189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The yeast TUM1 affects production of hydrogen sulfide from cysteine treatment during fermentation.
    Huang CW; Walker ME; Fedrizzi B; Roncoroni M; Gardner RC; Jiranek V
    FEMS Yeast Res; 2016 Dec; 16(8):. PubMed ID: 27915245
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of gluconeogenesis and lipid production in an engineered oleaginous Saccharomyces cerevisiae transformant.
    Kamisaka Y; Kimura K; Uemura H; Ledesma-Amaro R
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8147-57. PubMed ID: 27311564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.