These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 20936675)

  • 21. Investigation of biomethylation of arsenic and tellurium during composting.
    Diaz-Bone RA; Raabe M; Awissus S; Keuter B; Menzel B; Küppers K; Widmann R; Hirner AV
    J Hazard Mater; 2011 May; 189(3):653-9. PubMed ID: 21354698
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution.
    Gonzaga MI; Santos JA; Ma LQ
    Environ Pollut; 2008 Jul; 154(2):212-8. PubMed ID: 18037547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic.
    Srivastava M; Ma LQ; Singh N; Singh S
    J Exp Bot; 2005 May; 56(415):1335-42. PubMed ID: 15781440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation.
    Wei CY; Chen TB
    Chemosphere; 2006 May; 63(6):1048-53. PubMed ID: 16297966
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Timing of phosphate application affects arsenic phytoextraction by Pteris vittata L. of different ages.
    Santos JA; Gonzaga MI; Ma LQ; Srivastava M
    Environ Pollut; 2008 Jul; 154(2):306-11. PubMed ID: 18045757
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uptake and accumulation of arsenic by 11 Pteris taxa from southern China.
    Wang HB; Wong MH; Lan CY; Baker AJ; Qin YR; Shu WS; Chen GZ; Ye ZH
    Environ Pollut; 2007 Jan; 145(1):225-33. PubMed ID: 16777301
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern).
    Zhang W; Cai Y; Downum KR; Ma LQ
    Environ Pollut; 2004 Oct; 131(3):337-45. PubMed ID: 15261396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A significant positive correlation between endogenous trans-zeatin content and total arsenic in arsenic hyperaccumulator Pteris cretica var. nervosa.
    Zhang X; Yang X; Wang H; Li Q; Wang H; Li Y
    Ecotoxicol Environ Saf; 2017 Apr; 138():199-205. PubMed ID: 28061413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arsenic uptake and accumulation in fern species growing at arsenic-contaminated sites of southern China: field surveys.
    Wang HB; Ye ZH; Shu WS; Li WC; Wong MH; Lan CY
    Int J Phytoremediation; 2006; 8(1):1-11. PubMed ID: 16615304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison of the dietary arsenic exposures from ingestion of contaminated soil and hyperaccumulating Pteris ferns used in a residential phytoremediation project.
    Ebbs S; Hatfield S; Nagarajan V; Blaylock M
    Int J Phytoremediation; 2010 Jan; 12(1):121-32. PubMed ID: 20734633
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selecting appropriate forms of nitrogen fertilizer to enhance soil arsenic removal by Pteris vittata: a new approach in phytoremediation.
    Liao XY; Chen TB; Xiao XY; Xie H; Yan XL; Zhai LM; Wu B
    Int J Phytoremediation; 2007; 9(4):269-80. PubMed ID: 18246706
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of indole-3-acetic acid on arsenic uptake and antioxidative enzymes in Pteris cretica var. nervosa and Pteris ensiformis.
    He S; Hu Y; Wang H; Wang H; Li Q
    Int J Phytoremediation; 2017 Mar; 19(3):231-238. PubMed ID: 27419850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pteridophytes in phytoremediation.
    Praveen A; Pandey VC
    Environ Geochem Health; 2020 Aug; 42(8):2399-2411. PubMed ID: 31587160
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Supercritical water treatment of heavy metal and arsenic metalloid-bioaccumulating-biomass.
    Li J; Chen J; Chen S
    Ecotoxicol Environ Saf; 2018 Aug; 157():102-110. PubMed ID: 29609106
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils.
    Leung HM; Ye ZH; Wong MH
    Environ Pollut; 2006 Jan; 139(1):1-8. PubMed ID: 16039023
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced uptake and translocation of arsenic in Cretan brake fern (Pteris cretica L.) through siderophorearsenic complex formation with an aid of rhizospheric bacterial activity.
    Jeong S; Moon HS; Nam K
    J Hazard Mater; 2014 Sep; 280():536-43. PubMed ID: 25215655
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zinc tolerance and accumulation in Pteris vittata L. and its potential for phytoremediation of Zn- and As-contaminated soil.
    An ZZ; Huang ZC; Lei M; Liao XY; Zheng YM; Chen TB
    Chemosphere; 2006 Feb; 62(5):796-802. PubMed ID: 15987653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plant algae method for arsenic removal from arsenic contaminated groundwater.
    de la Paix MJ; Lanhai L; de Dieu HJ; John MN
    Water Sci Technol; 2012; 65(5):927-31. PubMed ID: 22339029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L.
    Silva Gonzaga MI; Santos JA; Ma LQ
    Environ Pollut; 2006 Sep; 143(2):254-60. PubMed ID: 16442683
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of an ecotype of brake-fern, Pteris vittata, for arsenic tolerance and accumulation in plant biomass.
    Sarangi BK; Chakrabarti T
    Tsitol Genet; 2008; 42(5):16-31. PubMed ID: 19140437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.