These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 20937246)
1. Laurdan and di-4-ANEPPDHQ do not respond to membrane-inserted peptides and are good probes for lipid packing. Dinic J; Biverståhl H; Mäler L; Parmryd I Biochim Biophys Acta; 2011 Jan; 1808(1):298-306. PubMed ID: 20937246 [TBL] [Abstract][Full Text] [Related]
2. Spectral imaging toolbox: segmentation, hyperstack reconstruction, and batch processing of spectral images for the determination of cell and model membrane lipid order. Aron M; Browning R; Carugo D; Sezgin E; Bernardino de la Serna J; Eggeling C; Stride E BMC Bioinformatics; 2017 May; 18(1):254. PubMed ID: 28494801 [TBL] [Abstract][Full Text] [Related]
3. Optimized time-gated generalized polarization imaging of Laurdan and di-4-ANEPPDHQ for membrane order image contrast enhancement. Owen DM; Gaus K Microsc Res Tech; 2010 Jun; 73(6):618-22. PubMed ID: 19937746 [TBL] [Abstract][Full Text] [Related]
5. Characterization and application of a new optical probe for membrane lipid domains. Jin L; Millard AC; Wuskell JP; Dong X; Wu D; Clark HA; Loew LM Biophys J; 2006 Apr; 90(7):2563-75. PubMed ID: 16415047 [TBL] [Abstract][Full Text] [Related]
6. Effect of N-terminal acetylation on lytic activity and lipid-packing perturbation induced in model membranes by a mastoparan-like peptide. Alvares DS; Wilke N; Ruggiero Neto J Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):737-748. PubMed ID: 29287697 [TBL] [Abstract][Full Text] [Related]
7. Order of lipid phases in model and plasma membranes. Kaiser HJ; Lingwood D; Levental I; Sampaio JL; Kalvodova L; Rajendran L; Simons K Proc Natl Acad Sci U S A; 2009 Sep; 106(39):16645-50. PubMed ID: 19805351 [TBL] [Abstract][Full Text] [Related]
8. Redesigning Solvatochromic Probe Laurdan for Imaging Lipid Order Selectively in Cell Plasma Membranes. Danylchuk DI; Sezgin E; Chabert P; Klymchenko AS Anal Chem; 2020 Nov; 92(21):14798-14805. PubMed ID: 33044816 [TBL] [Abstract][Full Text] [Related]
9. A model for the interaction of 6-lauroyl-2-(N,N-dimethylamino)naphthalene with lipid environments: implications for spectral properties. Bagatolli LA; Parasassi T; Fidelio GD; Gratton E Photochem Photobiol; 1999 Oct; 70(4):557-64. PubMed ID: 10546552 [TBL] [Abstract][Full Text] [Related]
10. Pressure-induced phase transitions of lipid bilayers observed by fluorescent probes Prodan and Laurdan. Kusube M; Tamai N; Matsuki H; Kaneshina S Biophys Chem; 2005 Oct; 117(3):199-206. PubMed ID: 15961215 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence spectra decomposition by asymmetric functions: Laurdan spectrum revisited. Bacalum M; Zorilă B; Radu M Anal Biochem; 2013 Sep; 440(2):123-9. PubMed ID: 23747535 [TBL] [Abstract][Full Text] [Related]
12. Mitochondrial creatine kinase binding to phospholipids decreases fluidity of membranes and promotes new lipid-induced beta structures as monitored by red edge excitation shift, laurdan fluorescence, and FTIR. Granjon T; Vacheron MJ; Vial C; Buchet R Biochemistry; 2001 May; 40(20):6016-26. PubMed ID: 11352737 [TBL] [Abstract][Full Text] [Related]
13. Melittin Induces Local Order Changes in Artificial and Biological Membranes as Revealed by Spectral Analysis of Laurdan Fluorescence. Zorilă B; Necula G; Radu M; Bacalum M Toxins (Basel); 2020 Nov; 12(11):. PubMed ID: 33171598 [TBL] [Abstract][Full Text] [Related]
14. Disorder Amidst Membrane Order: Standardizing Laurdan Generalized Polarization and Membrane Fluidity Terms. Jay AG; Hamilton JA J Fluoresc; 2017 Jan; 27(1):243-249. PubMed ID: 27738919 [TBL] [Abstract][Full Text] [Related]
15. Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer. Antollini SS; Soto MA; Bonini de Romanelli I; Gutiérrez-Merino C; Sotomayor P; Barrantes FJ Biophys J; 1996 Mar; 70(3):1275-84. PubMed ID: 8785283 [TBL] [Abstract][Full Text] [Related]
16. Will C-Laurdan dethrone Laurdan in fluorescent solvent relaxation techniques for lipid membrane studies? Barucha-Kraszewska J; Kraszewski S; Ramseyer C Langmuir; 2013 Jan; 29(4):1174-82. PubMed ID: 23311388 [TBL] [Abstract][Full Text] [Related]
17. Disclosure of discrete sites for phospholipid and sterols at the protein-lipid interface in native acetylcholine receptor-rich membrane. Antollini SS; Barrantes FJ Biochemistry; 1998 Nov; 37(47):16653-62. PubMed ID: 9843433 [TBL] [Abstract][Full Text] [Related]
18. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes. Arouri A; Dathe M; Blume A Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704 [TBL] [Abstract][Full Text] [Related]
19. Imaging lipid lateral organization in membranes with C-laurdan in a confocal microscope. Dodes Traian MM; Flecha FLG; Levi V J Lipid Res; 2012 Mar; 53(3):609-616. PubMed ID: 22184757 [TBL] [Abstract][Full Text] [Related]