These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 20937415)

  • 41. Biodegradable 'intelligent' materials in response to chemical stimuli for biomedical applications.
    Ju XJ; Xie R; Yang L; Chu LY
    Expert Opin Ther Pat; 2009 May; 19(5):683-96. PubMed ID: 19441941
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Matrices and scaffolds for protein delivery in tissue engineering.
    Tessmar JK; Göpferich AM
    Adv Drug Deliv Rev; 2007 May; 59(4-5):274-91. PubMed ID: 17544542
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modeling of dispersed-drug delivery from planar polymeric systems: optimizing analytical solutions.
    Helbling IM; Ibarra JC; Luna JA; Cabrera MI; Grau RJ
    Int J Pharm; 2010 Nov; 400(1-2):131-7. PubMed ID: 20816929
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mathematical modeling of bioerodible, polymeric drug delivery systems.
    Siepmann J; Göpferich A
    Adv Drug Deliv Rev; 2001 Jun; 48(2-3):229-47. PubMed ID: 11369084
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mathematical modeling of drug delivery from torus-shaped single-layer devices.
    Helbling IM; Luna JA; Cabrera MI
    J Control Release; 2011 Feb; 149(3):258-63. PubMed ID: 20971140
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Computational nanomedicine for mechanistic elucidation of bilayer nanoparticle-mediated release for tissue engineering.
    Izadifar M; Kelly ME; Chen X
    Nanomedicine (Lond); 2017 Mar; 12(5):423-442. PubMed ID: 28186439
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Design optimization of scaffold microstructures using wall shear stress criterion towards regulated flow-induced erosion.
    Chen Y; Schellekens M; Zhou S; Cadman J; Li W; Appleyard R; Li Q
    J Biomech Eng; 2011 Aug; 133(8):081008. PubMed ID: 21950901
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A multi-scale method for modeling degradation of bioresorbable polyesters.
    Zhang T; Zhou S; Gao X; Yang Z; Sun L; Zhang D
    Acta Biomater; 2017 Mar; 50():462-475. PubMed ID: 28017865
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Application of mathematical modeling in sustained release delivery systems.
    Grassi M; Grassi G
    Expert Opin Drug Deliv; 2014 Aug; 11(8):1299-321. PubMed ID: 24938598
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetic model for 5-fluorouridine degradation. Catalytic effect of 5-fluorouracil.
    Dorta MJ; Munguía O; Llabrés M
    Arzneimittelforschung; 2000 Sep; 50(9):858-61. PubMed ID: 11050706
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A unified mathematical model for the prediction of controlled release from surface and bulk eroding polymer matrices.
    Rothstein SN; Federspiel WJ; Little SR
    Biomaterials; 2009 Mar; 30(8):1657-64. PubMed ID: 19101031
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Acid-Labile Thermoresponsive Copolymers That Combine Fast pH-Triggered Hydrolysis and High Stability under Neutral Conditions.
    Zhang Q; Hou Z; Louage B; Zhou D; Vanparijs N; De Geest BG; Hoogenboom R
    Angew Chem Int Ed Engl; 2015 Sep; 54(37):10879-83. PubMed ID: 26212481
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Higuchi's equation and beyond: overview of the formulation and application of a generalized model of drug release from polymeric matrices.
    Petropoulos JH; Papadokostaki KG; Sanopoulou M
    Int J Pharm; 2012 Nov; 437(1-2):178-91. PubMed ID: 22921377
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Drug eluting sutures: a model for in vivo estimations.
    Casalini T; Masi M; Perale G
    Int J Pharm; 2012 Jun; 429(1-2):148-57. PubMed ID: 22465632
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Nonlinear Mathematical Model of Drug Delivery from Polymeric Matrix.
    Chakravarty K; Dalal DC
    Bull Math Biol; 2019 Jan; 81(1):105-130. PubMed ID: 30298197
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Factors Controlling Degradation of Biologically Relevant Synthetic Polymers in Solution and Solid State.
    Brito J; Andrianov AK; Sukhishvili SA
    ACS Appl Bio Mater; 2022 Nov; 5(11):5057-5076. PubMed ID: 36206552
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Atomistic modeling of water diffusion in hydrolytic biomaterials.
    Gautieri A; Mezzanzanica A; Motta A; Redealli A; Vesentini S
    J Mol Model; 2012 Apr; 18(4):1495-502. PubMed ID: 21785936
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mathematical models describing polymer dissolution: consequences for drug delivery.
    Narasimhan B
    Adv Drug Deliv Rev; 2001 Jun; 48(2-3):195-210. PubMed ID: 11369082
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Model of dissolution in the framework of tissue engineering and drug delivery.
    Sanz-Herrera JA; Soria L; Reina-Romo E; Torres Y; Boccaccini AR
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1331-1341. PubMed ID: 29789979
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design and applications of protein delivery systems in nanomedicine and tissue engineering.
    Bizeau J; Mertz D
    Adv Colloid Interface Sci; 2021 Jan; 287():102334. PubMed ID: 33341459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.