These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 20937516)
1. Bacterial stimulation of copper phytoaccumulation by bioaugmentation with rhizosphere bacteria. Andreazza R; Okeke BC; Lambais MR; Bortolon L; de Melo GW; Camargo FA Chemosphere; 2010 Nov; 81(9):1149-54. PubMed ID: 20937516 [TBL] [Abstract][Full Text] [Related]
2. Potential phytoextraction and phytostabilization of perennial peanut on copper-contaminated vineyard soils and copper mining waste. Andreazza R; Bortolon L; Pieniz S; Giacometti M; Roehrs DD; Lambais MR; Camargo FA Biol Trace Elem Res; 2011 Dec; 143(3):1729-39. PubMed ID: 21286847 [TBL] [Abstract][Full Text] [Related]
3. Characterization of copper-resistant rhizosphere bacteria from Avena sativa and Plantago lanceolata for copper bioreduction and biosorption. Andreazza R; Okeke BC; Pieniz S; Camargo FA Biol Trace Elem Res; 2012 Apr; 146(1):107-15. PubMed ID: 22002857 [TBL] [Abstract][Full Text] [Related]
4. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Chen YX; Wang YP; Lin Q; Luo YM Environ Int; 2005 Aug; 31(6):861-6. PubMed ID: 16005516 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of two Brazilian indigenous plants for phytostabilization and phytoremediation of copper-contaminated soils. Andreazza R; Bortolon L; Pieniz S; Bento FM; Camargo FA Braz J Biol; 2015 Nov; 75(4):868-77. PubMed ID: 26675903 [TBL] [Abstract][Full Text] [Related]
6. Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. Jiang LY; Yang XE; He ZL Chemosphere; 2004 Jun; 55(9):1179-87. PubMed ID: 15081758 [TBL] [Abstract][Full Text] [Related]
7. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. Lin Q; Shen KL; Zhao HM; Li WH J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741 [TBL] [Abstract][Full Text] [Related]
8. Copper-resistant bacteria enhance plant growth and copper phytoextraction. Yang R; Luo C; Chen Y; Wang G; Xu Y; Shen Z Int J Phytoremediation; 2013; 15(6):573-84. PubMed ID: 23819298 [TBL] [Abstract][Full Text] [Related]
9. Bioremediation of copper-contaminated soils by bacteria. Cornu JY; Huguenot D; Jézéquel K; Lollier M; Lebeau T World J Microbiol Biotechnol; 2017 Feb; 33(2):26. PubMed ID: 28044274 [TBL] [Abstract][Full Text] [Related]
10. Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: the impact of a rhizobial inoculum. Xu L; Teng Y; Li ZG; Norton JM; Luo YM Sci Total Environ; 2010 Feb; 408(5):1007-13. PubMed ID: 19995667 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Lin Q; Wang Z; Ma S; Chen Y Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990 [TBL] [Abstract][Full Text] [Related]
12. The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil. Abbaszadeh-Dahaji P; Baniasad-Asgari A; Hamidpour M Environ Sci Pollut Res Int; 2019 Nov; 26(31):31822-31833. PubMed ID: 31487012 [TBL] [Abstract][Full Text] [Related]
13. Impacts of chelate-assisted phytoremediation on microbial community composition in the rhizosphere of a copper accumulator and non-accumulator. Chen Y; Wang Y; Wu W; Lin Q; Xue S Sci Total Environ; 2006 Mar; 356(1-3):247-55. PubMed ID: 15935447 [TBL] [Abstract][Full Text] [Related]
14. Effects of stimulation of copper bioleaching on microbial community in vineyard soil and copper mining waste. Andreazza R; Okeke BC; Pieniz S; Bortolon L; Lambais MR; Camargo FA Biol Trace Elem Res; 2012 Apr; 146(1):124-33. PubMed ID: 21947860 [TBL] [Abstract][Full Text] [Related]
15. Cover crops influence soil microorganisms and phytoextraction of copper from a moderately contaminated vineyard. Mackie KA; Schmidt HP; Müller T; Kandeler E Sci Total Environ; 2014 Dec; 500-501():34-43. PubMed ID: 25217742 [TBL] [Abstract][Full Text] [Related]
16. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica. Mesa V; Navazas A; González-Gil R; González A; Weyens N; Lauga B; Gallego JLR; Sánchez J; Peláez AI Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188207 [TBL] [Abstract][Full Text] [Related]
17. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Rajkumar M; Vara Prasad MN; Freitas H; Ae N Crit Rev Biotechnol; 2009; 29(2):120-30. PubMed ID: 19514893 [TBL] [Abstract][Full Text] [Related]
18. Promotion of growth and Cu accumulation of bio-energy crop (Zea mays) by bacteria: implications for energy plant biomass production and phytoremediation. Sheng X; Sun L; Huang Z; He L; Zhang W; Chen Z J Environ Manage; 2012 Jul; 103():58-64. PubMed ID: 22459071 [TBL] [Abstract][Full Text] [Related]
19. Beta-cyclodextrin enhanced phytoremediation of aged PCBs-contaminated soil from e-waste recycling area. Chen Y; Tang X; Cheema SA; Liu W; Shen C J Environ Monit; 2010 Jul; 12(7):1482-9. PubMed ID: 20523947 [TBL] [Abstract][Full Text] [Related]
20. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chiu KK; Ye ZH; Wong MH Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]