BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 20937540)

  • 41. Enhanced transport of Si-coated nanoscale zero-valent iron particles in porous media.
    HonetschlÄgerová L; Janouškovcová P; Kubal M
    Environ Technol; 2016; 37(12):1530-8. PubMed ID: 26582314
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stabilization of engineered zero-valent nanoiron with Na-acrylic copolymer enhances spermiotoxicity.
    Kadar E; Tarran GA; Jha AN; Al-Subiai SN
    Environ Sci Technol; 2011 Apr; 45(8):3245-51. PubMed ID: 21291273
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The influence of humic acid and clay content on the transport of polymer-coated iron nanoparticles through sand.
    Jung B; O'Carroll D; Sleep B
    Sci Total Environ; 2014 Oct; 496():155-164. PubMed ID: 25079234
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid.
    Kim HS; Ahn JY; Kim C; Lee S; Hwang I
    Chemosphere; 2014 Oct; 113():93-100. PubMed ID: 25065795
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles.
    Sakulchaicharoen N; O'Carroll DM; Herrera JE
    J Contam Hydrol; 2010 Nov; 118(3-4):117-27. PubMed ID: 20934234
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sulfidation enhances stability and mobility of carboxymethyl cellulose stabilized nanoscale zero-valent iron in saturated porous media.
    Gong L; Shi S; Lv N; Xu W; Ye Z; Gao B; O'Carroll DM; He F
    Sci Total Environ; 2020 May; 718():137427. PubMed ID: 32105934
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ligand-mediated contaminant degradation by bare and carboxymethyl cellulose-coated bimetallic palladium-zero valent iron nanoparticles in high salinity environments.
    Ma X; He D; Jones AM; Waite TD; An T
    J Environ Sci (China); 2019 Mar; 77():303-311. PubMed ID: 30573094
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Removal of atrazine by nanoscale zero valent iron supported on organobentonite.
    Zhang Y; Li Y; Zheng X
    Sci Total Environ; 2011 Jan; 409(3):625-30. PubMed ID: 21093019
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron.
    Dong H; Xie Y; Zeng G; Tang L; Liang J; He Q; Zhao F; Zeng Y; Wu Y
    Chemosphere; 2016 Feb; 144():1682-9. PubMed ID: 26519799
    [TBL] [Abstract][Full Text] [Related]  

  • 50. PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone.
    Fagerlund F; Illangasekare TH; Phenrat T; Kim HJ; Lowry GV
    J Contam Hydrol; 2012 Apr; 131(1-4):9-28. PubMed ID: 22326687
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI) particles.
    Huang P; Ye Z; Xie W; Chen Q; Li J; Xu Z; Yao M
    Water Res; 2013 Aug; 47(12):4050-8. PubMed ID: 23566331
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transport of sucrose-modified nanoscale zero-valent iron in saturated porous media: role of media size, injection rate and input concentration.
    Li H; Zhao YS; Han ZT; Hong M
    Water Sci Technol; 2015; 72(9):1463-71. PubMed ID: 26524436
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead.
    Kim H; Hong HJ; Jung J; Kim SH; Yang JW
    J Hazard Mater; 2010 Apr; 176(1-3):1038-43. PubMed ID: 20042289
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A fabrication strategy for nanosized zero valent iron (nZVI)-polymeric anion exchanger composites with tunable structure for nitrate reduction.
    Jiang Z; Zhang S; Pan B; Wang W; Wang X; Lv L; Zhang W; Zhang Q
    J Hazard Mater; 2012 Sep; 233-234():1-6. PubMed ID: 22795842
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Enhanced reductive decoloration of methylene blue by polyacrylic acid modified zero-valent iron nanoparticles].
    He J; Wang XY; Wang P; Liu KQ
    Huan Jing Ke Xue; 2015 Mar; 36(3):980-8. PubMed ID: 25929066
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transport characteristics of surface-modified nanoscale zero-valent iron in porous media.
    Kanel SR; Choi H
    Water Sci Technol; 2007; 55(1-2):157-62. PubMed ID: 17305135
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reduction of nitrate by resin-supported nanoscale zero-valent iron.
    Park H; Park YM; Yoo KM; Lee SH
    Water Sci Technol; 2009; 59(11):2153-7. PubMed ID: 19494454
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dispersant-modified iron nanoparticles for mobility enhancement and TCE degradation: a comparison study.
    Peng YP; Chen TY; Wu CY; Chang YC; Chen KF
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34157-34166. PubMed ID: 30456616
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media.
    Solovitch N; Labille J; Rose J; Chaurand P; Borschneck D; Wiesner MR; Bottero JY
    Environ Sci Technol; 2010 Jul; 44(13):4897-902. PubMed ID: 20524647
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluating the mobility of polymer-stabilised zero-valent iron nanoparticles and their potential to co-transport contaminants in intact soil cores.
    Chekli L; Brunetti G; Marzouk ER; Maoz-Shen A; Smith E; Naidu R; Shon HK; Lombi E; Donner E
    Environ Pollut; 2016 Sep; 216():636-645. PubMed ID: 27357483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.