These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 20937608)

  • 61. Catalog of Erycina pusilla miRNA and categorization of reproductive phase-related miRNAs and their target gene families.
    Lin CS; Chen JJ; Huang YT; Hsu CT; Lu HC; Chou ML; Chen LC; Ou CI; Liao DC; Yeh YY; Chang SB; Shen SC; Wu FH; Shih MC; Chan MT
    Plant Mol Biol; 2013 May; 82(1-2):193-204. PubMed ID: 23575662
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mimicry technology: suppressing small RNA activity in plants.
    Rubio-Somoza I; Manavella PA
    Methods Mol Biol; 2011; 732():131-7. PubMed ID: 21431710
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The potential roles of microRNAs in molecular breeding.
    Liu Q; Chen YQ
    Methods Mol Biol; 2012; 877():303-11. PubMed ID: 22610637
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The Control of Developmental Phase Transitions by microRNAs and Their Targets in Seed Plants.
    Ma J; Zhao P; Liu S; Yang Q; Guo H
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32183075
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Silencing of Stress-Regulated miRNAs in Plants by Short Tandem Target Mimic (STTM) Approach.
    Teotia S; Tang G
    Methods Mol Biol; 2017; 1631():337-348. PubMed ID: 28735409
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Redundant and specific roles of individual MIR172 genes in plant development.
    Lian H; Wang L; Ma N; Zhou CM; Han L; Zhang TQ; Wang JW
    PLoS Biol; 2021 Feb; 19(2):e3001044. PubMed ID: 33529193
    [TBL] [Abstract][Full Text] [Related]  

  • 67. MicroRNA-mediated establishment of transcription factor gradients controlling developmental phase transitions.
    Saleh O; Arazi T; Frank W
    Plant Signal Behav; 2011 Jun; 6(6):873-7. PubMed ID: 21543901
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Modulation of miR156 to identify traits associated with vegetative phase change in tobacco (Nicotiana tabacum).
    Feng S; Xu Y; Guo C; Zheng J; Zhou B; Zhang Y; Ding Y; Zhang L; Zhu Z; Wang H; Wu G
    J Exp Bot; 2016 Mar; 67(5):1493-504. PubMed ID: 26763975
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Missing Pieces in the Puzzle of Plant MicroRNAs.
    Reis RS; Eamens AL; Waterhouse PM
    Trends Plant Sci; 2015 Nov; 20(11):721-728. PubMed ID: 26442682
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Morphological changes during juvenile-to-adult phase transition in sorghum.
    Hashimoto S; Tezuka T; Yokoi S
    Planta; 2019 Nov; 250(5):1557-1566. PubMed ID: 31359138
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [The role of miR319 in plant development regulation].
    Luo M; Zhang ZM; Gao J; Zeng X; Pan GT
    Yi Chuan; 2011 Nov; 33(11):1203-11. PubMed ID: 22120075
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Evolutionary Comparison of Two Combinatorial Regulators of SBP-Box Genes, MiR156 and MiR529, in Plants.
    Zhang SD; Ling LZ; Zhang QF; Xu JD; Cheng L
    PLoS One; 2015; 10(4):e0124621. PubMed ID: 25909360
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The role of microRNAs in the control of flowering time.
    Spanudakis E; Jackson S
    J Exp Bot; 2014 Feb; 65(2):365-80. PubMed ID: 24474808
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Sugar is an endogenous cue for juvenile-to-adult phase transition in plants.
    Yu S; Cao L; Zhou CM; Zhang TQ; Lian H; Sun Y; Wu J; Huang J; Wang G; Wang JW
    Elife; 2013 Mar; 2():e00269. PubMed ID: 23543845
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The entangled history of animal and plant microRNAs.
    Reis RS
    Funct Integr Genomics; 2017 May; 17(2-3):127-134. PubMed ID: 27549410
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Knockdown of Rice microRNA166 by Short Tandem Target Mimic (STTM).
    Teotia S; Zhang D; Tang G
    Methods Mol Biol; 2017; 1654():337-349. PubMed ID: 28986803
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Identification and differential expression of miRNA related to seed dormancy of Paris polyphylla var. chinensis].
    Zhang CC; Wang HJ; Liang HH; Gao Z; Luo LN; He C; Xiang ZX
    Zhongguo Zhong Yao Za Zhi; 2020 Dec; 45(24):5958-5966. PubMed ID: 33496135
    [TBL] [Abstract][Full Text] [Related]  

  • 78. In silico search and biological validation of microRNAs related to drought response in peach and almond.
    Esmaeili F; Shiran B; Fallahi H; Mirakhorli N; Budak H; Martínez-Gómez P
    Funct Integr Genomics; 2017 May; 17(2-3):189-201. PubMed ID: 27068847
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Developmental changes in barley microRNA expression profiles coupled with miRNA target analysis.
    Pacak A; Kruszka K; Swida-Barteczka A; Nuc P; Karlowski W; Jarmolowski A; Szweykowska-Kulinska Z
    Acta Biochim Pol; 2016; 63(4):799-809. PubMed ID: 27801427
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Repression of transcription factors by microRNA during seed germination and postgerminaiton: Another level of molecular repression in seeds.
    Nonogaki H
    Plant Signal Behav; 2008 Jan; 3(1):65-7. PubMed ID: 19704775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.