BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 20937710)

  • 1. Phenotypic distinctions between neural crest and placodal derived vagal C-fibres in mouse lungs.
    Nassenstein C; Taylor-Clark TE; Myers AC; Ru F; Nandigama R; Bettner W; Undem BJ
    J Physiol; 2010 Dec; 588(Pt 23):4769-83. PubMed ID: 20937710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. P2X2 receptors differentiate placodal vs. neural crest C-fiber phenotypes innervating guinea pig lungs and esophagus.
    Kwong K; Kollarik M; Nassenstein C; Ru F; Undem BJ
    Am J Physiol Lung Cell Mol Physiol; 2008 Nov; 295(5):L858-65. PubMed ID: 18689601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct Expression of Phenotypic Markers in Placodes- and Neural Crest-Derived Afferent Neurons Innervating the Rat Stomach.
    Trancikova A; Kovacova E; Ru F; Varga K; Brozmanova M; Tatar M; Kollarik M
    Dig Dis Sci; 2018 Feb; 63(2):383-394. PubMed ID: 29275446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The neural crest- and placodes-derived afferent innervation of the mouse esophagus.
    Surdenikova L; Ru F; Nassenstein C; Tatar M; Kollarik M
    Neurogastroenterol Motil; 2012 Oct; 24(10):e517-25. PubMed ID: 22937918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic distinctions between the nodose and jugular TRPV1-positive vagal sensory neurons in the cynomolgus monkey.
    Kollarik M; Ru F; Undem BJ
    Neuroreport; 2019 May; 30(8):533-537. PubMed ID: 30896676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subtypes of vagal afferent C-fibres in guinea-pig lungs.
    Undem BJ; Chuaychoo B; Lee MG; Weinreich D; Myers AC; Kollarik M
    J Physiol; 2004 May; 556(Pt 3):905-17. PubMed ID: 14978204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurotrophin and GDNF family ligand receptor expression in vagal sensory nerve subtypes innervating the adult guinea pig respiratory tract.
    Lieu T; Kollarik M; Myers AC; Undem BJ
    Am J Physiol Lung Cell Mol Physiol; 2011 May; 300(5):L790-8. PubMed ID: 21335521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 5-Hydroxytryptamine selectively activates the vagal nodose C-fibre subtype in the guinea-pig oesophagus.
    Yu S; Ru F; Ouyang A; Kollarik M
    Neurogastroenterol Motil; 2008 Sep; 20(9):1042-50. PubMed ID: 18482251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct and common expression of receptors for inflammatory mediators in vagal nodose versus jugular capsaicin-sensitive/TRPV1-positive neurons detected by low input RNA sequencing.
    Wang J; Kollarik M; Ru F; Sun H; McNeil B; Dong X; Stephens G; Korolevich S; Brohawn P; Kolbeck R; Undem B
    PLoS One; 2017; 12(10):e0185985. PubMed ID: 28982197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preferential activation of the vagal nodose nociceptive subtype by TRPA1 agonists in the guinea pig esophagus.
    Brozmanova M; Ru F; Surdenikova L; Mazurova L; Taylor-Clark T; Kollarik M
    Neurogastroenterol Motil; 2011 Oct; 23(10):e437-45. PubMed ID: 21883700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenosine-induced activation of esophageal nociceptors.
    Ru F; Surdenikova L; Brozmanova M; Kollarik M
    Am J Physiol Gastrointest Liver Physiol; 2011 Mar; 300(3):G485-93. PubMed ID: 21148396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vagal afferent nerves with nociceptive properties in guinea-pig oesophagus.
    Yu S; Undem BJ; Kollarik M
    J Physiol; 2005 Mar; 563(Pt 3):831-42. PubMed ID: 15649987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping of the Sensory Innervation of the Mouse Lung by Specific Vagal and Dorsal Root Ganglion Neuronal Subsets.
    Kim SH; Patil MJ; Hadley SH; Bahia PK; Butler SG; Madaram M; Taylor-Clark TE
    eNeuro; 2022; 9(2):. PubMed ID: 35365503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-gated sodium channels in nociceptive versus non-nociceptive nodose vagal sensory neurons innervating guinea pig lungs.
    Kwong K; Carr MJ; Gibbard A; Savage TJ; Singh K; Jing J; Meeker S; Undem BJ
    J Physiol; 2008 Mar; 586(5):1321-36. PubMed ID: 18187475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of placodal and neural crest cells to avian cranial peripheral ganglia.
    D'Amico-Martel A; Noden DM
    Am J Anat; 1983 Apr; 166(4):445-68. PubMed ID: 6858941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for both adenosine A1 and A2A receptors activating single vagal sensory C-fibres in guinea pig lungs.
    Chuaychoo B; Lee MG; Kollarik M; Pullmann R; Undem BJ
    J Physiol; 2006 Sep; 575(Pt 2):481-90. PubMed ID: 16793905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different role of TTX-sensitive voltage-gated sodium channel (Na
    Kollarik M; Sun H; Herbstsomer RA; Ru F; Kocmalova M; Meeker SN; Undem BJ
    J Physiol; 2018 Apr; 596(8):1419-1432. PubMed ID: 29435993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Embryonic origin of substance P containing neurons in cranial and spinal sensory ganglia of the avian embryo.
    Fontaine-Perus J; Chanconie M; Le Douarin NM
    Dev Biol; 1985 Jan; 107(1):227-38. PubMed ID: 2578116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of olvanil and anandamide on vagal C-fiber subtypes in guinea pig lung.
    Lee MG; Weinreich D; Undem BJ
    Br J Pharmacol; 2005 Oct; 146(4):596-603. PubMed ID: 16056239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphingosine-1-phosphate activates mouse vagal airway afferent C-fibres via S1PR3 receptors.
    Patil MJ; Meeker S; Bautista D; Dong X; Undem BJ
    J Physiol; 2019 Apr; 597(7):2007-2019. PubMed ID: 30793318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.