BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 20937813)

  • 1. Identification and functions of amino acid residues in PotB and PotC involved in spermidine uptake activity.
    Higashi K; Sakamaki Y; Herai E; Demizu R; Uemura T; Saroj SD; Zenda R; Terui Y; Nishimura K; Toida T; Kashiwagi K; Igarashi K
    J Biol Chem; 2010 Dec; 285(50):39061-9. PubMed ID: 20937813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spermidine-preferential uptake system in Escherichia coli. Identification of amino acids involved in polyamine binding in PotD protein.
    Kashiwagi K; Pistocchi R; Shibuya S; Sugiyama S; Morikawa K; Igarashi K
    J Biol Chem; 1996 May; 271(21):12205-8. PubMed ID: 8647815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ATPase activity and the functional domain of PotA, a component of the sermidine-preferential uptake system in Escherichia coli.
    Kashiwagi K; Innami A; Zenda R; Tomitori H; Igarashi K
    J Biol Chem; 2002 Jul; 277(27):24212-9. PubMed ID: 11976340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spermidine-preferential uptake system in Escherichia coli. ATP hydrolysis by PotA protein and its association with membrane.
    Kashiwagi K; Endo H; Kobayashi H; Takio K; Igarashi K
    J Biol Chem; 1995 Oct; 270(43):25377-82. PubMed ID: 7592703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functions of potA and potD proteins in spermidine-preferential uptake system in Escherichia coli.
    Kashiwagi K; Miyamoto S; Nukui E; Kobayashi H; Igarashi K
    J Biol Chem; 1993 Sep; 268(26):19358-63. PubMed ID: 8366082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional inhibition of the operon for the spermidine uptake system by the substrate-binding protein PotD.
    Antognoni F; Del Duca S; Kuraishi A; Kawabe E; Fukuchi-Shimogori T; Kashiwagi K; Igarashi K
    J Biol Chem; 1999 Jan; 274(4):1942-8. PubMed ID: 9890949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the cadaverine recognition site on the cadaverine-lysine antiporter CadB.
    Soksawatmaekhin W; Uemura T; Fukiwake N; Kashiwagi K; Igarashi K
    J Biol Chem; 2006 Sep; 281(39):29213-20. PubMed ID: 16877381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of PotD, the primary receptor of the polyamine transport system in Escherichia coli.
    Sugiyama S; Vassylyev DG; Matsushima M; Kashiwagi K; Igarashi K; Morikawa K
    J Biol Chem; 1996 Apr; 271(16):9519-25. PubMed ID: 8621624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primary structure of murine major histocompatibility complex alloantigens: amino acid sequence of the amino-terminal one hundred and seventy-three residues of the H-2Kb glycoprotein.
    Uehara H; Ewenstein BM; Martinko JM; Nathenson SG; Coligan JE; Kindt TJ
    Biochemistry; 1980 Jan; 19(2):306-15. PubMed ID: 6986168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the substrate-binding PotD subunit in Synechocystis sp. strain PCC 6803.
    Brandt AM; Raksajit W; Yodsang P; Mulo P; Incharoensakdi A; Salminen TA; Mäenpää P
    Arch Microbiol; 2010 Oct; 192(10):791-801. PubMed ID: 20661547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyamine uptake systems in Escherichia coli.
    Igarashi K; Ito K; Kashiwagi K
    Res Microbiol; 2001; 152(3-4):271-8. PubMed ID: 11421274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The primary structure of human liver manganese superoxide dismutase.
    Barra D; Schinina ME; Simmaco M; Bannister JV; Bannister WH; Rotilio G; Bossa F
    J Biol Chem; 1984 Oct; 259(20):12595-601. PubMed ID: 6386798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysine 319 interacts with both glutamic acid 269 and aspartic acid 240 in the lactose carrier of Escherichia coli.
    Lee JI; Hwang PP; Wilson TH
    J Biol Chem; 1993 Sep; 268(27):20007-15. PubMed ID: 8104184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and distinct regulation of three di/tripeptide transporters in Aspergillus oryzae.
    Tanaka M; Ito K; Matsuura T; Kawarasaki Y; Gomi K
    Biosci Biotechnol Biochem; 2021 Feb; 85(2):452-463. PubMed ID: 33604648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Spermidine on Biofilm Formation in Escherichia coli K-12.
    Thongbhubate K; Nakafuji Y; Matsuoka R; Kakegawa S; Suzuki H
    J Bacteriol; 2021 Apr; 203(10):. PubMed ID: 33685971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function studies of human deoxyhypusine synthase: identification of amino acid residues critical for the binding of spermidine and NAD.
    Lee CH; Um PY; Park MH
    Biochem J; 2001 May; 355(Pt 3):841-9. PubMed ID: 11311149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and function of polyamine-amino acid antiporters CadB and PotE in Escherichia coli.
    Tomitori H; Kashiwagi K; Igarashi K
    Amino Acids; 2012 Feb; 42(2-3):733-40. PubMed ID: 21796432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The primary structure of iron-superoxide dismutase from Photobacterium leiognathi.
    Barra D; Schininà ME; Bannister WH; Bannister JV; Bossa F
    J Biol Chem; 1987 Jan; 262(3):1001-9. PubMed ID: 3542995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spermine and Spermidine Alter Gene Expression and Antigenic Profile of Borrelia burgdorferi.
    Lin YH; Romo JA; Smith TC; Reyes AN; Karna SLR; Miller CL; Van Laar TA; Yendapally R; Chambers JP; Seshu J
    Infect Immun; 2017 Mar; 85(3):. PubMed ID: 28052993
    [No Abstract]   [Full Text] [Related]  

  • 20. [Polyamine transport in Escherichia coli and eukaryotic cells].
    Kashiwagi K
    Yakugaku Zasshi; 1996 Mar; 116(3):175-91. PubMed ID: 8721347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.