These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 20937879)
1. Inhibition of ceramide biosynthesis preserves photoreceptor structure and function in a mouse model of retinitis pigmentosa. Strettoi E; Gargini C; Novelli E; Sala G; Piano I; Gasco P; Ghidoni R Proc Natl Acad Sci U S A; 2010 Oct; 107(43):18706-11. PubMed ID: 20937879 [TBL] [Abstract][Full Text] [Related]
2. Cone survival and preservation of visual acuity in an animal model of retinal degeneration. Piano I; Novelli E; Gasco P; Ghidoni R; Strettoi E; Gargini C Eur J Neurosci; 2013 Jun; 37(11):1853-62. PubMed ID: 23551187 [TBL] [Abstract][Full Text] [Related]
3. Sphingolipid biosynthetic inhibitor L-Cycloserine prevents oxidative-stress-mediated death in an in vitro model of photoreceptor-derived 661W cells. Tahia F; Basu SK; Prislovsky A; Mondal K; Ma D; Kochat H; Brown K; Stephenson DJ; Chalfant CE; Mandal N Exp Eye Res; 2024 May; 242():109852. PubMed ID: 38460719 [TBL] [Abstract][Full Text] [Related]
5. The synthetic progestin norgestrel acts to increase LIF levels in the rd10 mouse model of retinitis pigmentosa. Byrne AM; Roche SL; Ruiz-Lopez AM; Jackson AC; Cotter TG Mol Vis; 2016; 22():264-74. PubMed ID: 27081297 [TBL] [Abstract][Full Text] [Related]
6. Tauroursodeoxycholic acid preservation of photoreceptor structure and function in the rd10 mouse through postnatal day 30. Phillips MJ; Walker TA; Choi HY; Faulkner AE; Kim MK; Sidney SS; Boyd AP; Nickerson JM; Boatright JH; Pardue MT Invest Ophthalmol Vis Sci; 2008 May; 49(5):2148-55. PubMed ID: 18436848 [TBL] [Abstract][Full Text] [Related]
7. Suppression of cGMP-Dependent Photoreceptor Cytotoxicity With Mycophenolate Is Neuroprotective in Murine Models of Retinitis Pigmentosa. Yang P; Lockard R; Titus H; Hiblar J; Weller K; Wafai D; Weleber RG; Duvoisin RM; Morgans CW; Pennesi ME Invest Ophthalmol Vis Sci; 2020 Aug; 61(10):25. PubMed ID: 32785677 [TBL] [Abstract][Full Text] [Related]
8. Antioxidants slow photoreceptor cell death in mouse models of retinitis pigmentosa. Komeima K; Rogers BS; Campochiaro PA J Cell Physiol; 2007 Dec; 213(3):809-15. PubMed ID: 17520694 [TBL] [Abstract][Full Text] [Related]
9. Wheel running exercise protects against retinal degeneration in the I307N rhodopsin mouse model of inducible autosomal dominant retinitis pigmentosa. Zhang X; Girardot PE; Sellers JT; Li Y; Wang J; Chrenek MA; Wu W; Skelton H; Nickerson JM; Pardue MT; Boatright JH Mol Vis; 2019; 25():462-476. PubMed ID: 31523123 [TBL] [Abstract][Full Text] [Related]
10. Novel ophthalmic formulation of myriocin: implications in retinitis pigmentosa. Platania CBM; Dei Cas M; Cianciolo S; Fidilio A; Lazzara F; Paroni R; Pignatello R; Strettoi E; Ghidoni R; Drago F; Bucolo C Drug Deliv; 2019 Dec; 26(1):237-243. PubMed ID: 30883241 [TBL] [Abstract][Full Text] [Related]
11. Knockout of ccr2 alleviates photoreceptor cell death in a model of retinitis pigmentosa. Guo C; Otani A; Oishi A; Kojima H; Makiyama Y; Nakagawa S; Yoshimura N Exp Eye Res; 2012 Nov; 104():39-47. PubMed ID: 23022404 [TBL] [Abstract][Full Text] [Related]
12. Decrease in DHA and other fatty acids correlates with photoreceptor degeneration in retinitis pigmentosa. Ruiz-Pastor MJ; Kutsyr O; Lax P; Cuenca N Exp Eye Res; 2021 Aug; 209():108667. PubMed ID: 34119484 [TBL] [Abstract][Full Text] [Related]
13. Tamoxifen Provides Structural and Functional Rescue in Murine Models of Photoreceptor Degeneration. Wang X; Zhao L; Zhang Y; Ma W; Gonzalez SR; Fan J; Kretschmer F; Badea TC; Qian HH; Wong WT J Neurosci; 2017 Mar; 37(12):3294-3310. PubMed ID: 28235894 [TBL] [Abstract][Full Text] [Related]
14. Defining the catalytic activity of nanoceria in the P23H-1 rat, a photoreceptor degeneration model. Wong LL; Pye QN; Chen L; Seal S; McGinnis JF PLoS One; 2015; 10(3):e0121977. PubMed ID: 25822196 [TBL] [Abstract][Full Text] [Related]
15. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mitton KP; Guzman AE; Deshpande M; Byrd D; DeLooff C; Mkoyan K; Zlojutro P; Wallace A; Metcalf B; Laux K; Sotzen J; Tran T Mol Vis; 2014; 20():1527-44. PubMed ID: 25489226 [TBL] [Abstract][Full Text] [Related]
16. Long-term preservation of cone photoreceptors and visual acuity in rd10 mutant mice exposed to continuous environmental enrichment. Barone I; Novelli E; Strettoi E Mol Vis; 2014; 20():1545-56. PubMed ID: 25489227 [TBL] [Abstract][Full Text] [Related]
17. Neuroprotective effects of methyl 3,4 dihydroxybenzoate in a mouse model of retinitis pigmentosa. Zhang J; Xu D; Ouyang H; Hu S; Li A; Luo H; Xu Y Exp Eye Res; 2017 Sep; 162():86-96. PubMed ID: 28709891 [TBL] [Abstract][Full Text] [Related]
18. Alterations to retinal architecture prior to photoreceptor loss in a mouse model of retinitis pigmentosa. Roche SL; Wyse-Jackson AC; Byrne AM; Ruiz-Lopez AM; Cotter TG Int J Dev Biol; 2016; 60(4-6):127-39. PubMed ID: 27160072 [TBL] [Abstract][Full Text] [Related]
19. p75 Platón-Corchado M; Barcelona PF; Jmaeff S; Marchena M; Hernández-Pinto AM; Hernández-Sánchez C; Saragovi HU; de la Rosa EJ Cell Death Dis; 2017 Jul; 8(7):e2922. PubMed ID: 28703796 [TBL] [Abstract][Full Text] [Related]
20. Cyclooxygenase-1 mediates neuroinflammation and neurotoxicity in a mouse model of retinitis pigmentosa. Yang W; Xiong G; Lin B J Neuroinflammation; 2020 Oct; 17(1):306. PubMed ID: 33059704 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]