BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 20938070)

  • 1. Dual energy CT using slow kVp switching acquisition and prior image constrained compressed sensing.
    Szczykutowicz TP; Chen GH
    Phys Med Biol; 2010 Nov; 55(21):6411-29. PubMed ID: 20938070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual energy CT with one full scan and a second sparse-view scan using structure preserving iterative reconstruction (SPIR).
    Wang T; Zhu L
    Phys Med Biol; 2016 Sep; 61(18):6684-6706. PubMed ID: 27552793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-energy, standard and low-kVp contrast-enhanced CT-cholangiography: a comparative analysis of image quality and radiation exposure.
    Stiller W; Schwarzwaelder CB; Sommer CM; Veloza S; Radeleff BA; Kauczor HU
    Eur J Radiol; 2012 Jul; 81(7):1405-12. PubMed ID: 21458939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative myocardial perfusion imaging using rapid kVp switch dual-energy CT: preliminary experience.
    So A; Lee TY; Imai Y; Narayanan S; Hsieh J; Kramer J; Procknow K; Leipsic J; Labounty T; Min J
    J Cardiovasc Comput Tomogr; 2011; 5(6):430-42. PubMed ID: 22146502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization.
    Dong X; Niu T; Zhu L
    Med Phys; 2014 May; 41(5):051909. PubMed ID: 24784388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exact dual energy material decomposition from inconsistent rays (MDIR).
    Maass C; Meyer E; Kachelriess M
    Med Phys; 2011 Feb; 38(2):691-700. PubMed ID: 21452706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bowel Peristalsis Artifact on Dual-Energy CT: In Vitro Study on the Influence of Different Dual-Energy CT Platforms and Enteric Contrast Agents.
    Obmann MM; Sun Y; An C; Ohliger MA; Wang ZJ; Yeh BM
    AJR Am J Roentgenol; 2022 Feb; 218(2):290-299. PubMed ID: 34406059
    [No Abstract]   [Full Text] [Related]  

  • 8. Deriving effective atomic numbers from DECT based on a parameterization of the ratio of high and low linear attenuation coefficients.
    Landry G; Seco J; Gaudreault M; Verhaegen F
    Phys Med Biol; 2013 Oct; 58(19):6851-66. PubMed ID: 24025623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-energy CT revisited with multidetector CT: review of principles and clinical applications.
    Karçaaltıncaba M; Aktaş A
    Diagn Interv Radiol; 2011 Sep; 17(3):181-94. PubMed ID: 20945292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of local dependent reliability information into the Prior Image Constrained Compressed Sensing (PICCS) reconstruction algorithm.
    Vaegler S; Stsepankou D; Hesser J; Sauer O
    Z Med Phys; 2015 Dec; 25(4):375-390. PubMed ID: 26422578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of dual- and triple-energy cone-beam micro-CT for postreconstruction material decomposition.
    Granton PV; Pollmann SI; Ford NL; Drangova M; Holdsworth DW
    Med Phys; 2008 Nov; 35(11):5030-42. PubMed ID: 19070237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iterative image-domain decomposition for dual-energy CT.
    Niu T; Dong X; Petrongolo M; Zhu L
    Med Phys; 2014 Apr; 41(4):041901. PubMed ID: 24694132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unified material decomposition framework for quantitative dual- and triple-energy CT imaging.
    Zhao W; Vernekohl D; Han F; Han B; Peng H; Yang Y; Xing L; Min JK
    Med Phys; 2018 Jul; 45(7):2964-2977. PubMed ID: 29679500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A general framework of noise suppression in material decomposition for dual-energy CT.
    Petrongolo M; Dong X; Zhu L
    Med Phys; 2015 Aug; 42(8):4848-62. PubMed ID: 26233212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technical Note: The use of DirectDensity
    Nelson G; Pigrish V; Sarkar V; Su FC; Salter B
    J Appl Clin Med Phys; 2019 Mar; 20(3):125-131. PubMed ID: 30851087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance evaluation of quantitative material decomposition in slow kVp switching dual-energy CT.
    Ma C; Su T; Zhu J; Zhang X; Zheng H; Liang D; Wang N; Zhang Y; Ge Y
    J Xray Sci Technol; 2024; 32(1):69-85. PubMed ID: 38189729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Scan Dual-Energy CT Using Primary Modulation.
    Petrongolo M; Zhu L
    IEEE Trans Med Imaging; 2018 Aug; 37(8):1799-1808. PubMed ID: 29994601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental implementation of a joint statistical image reconstruction method for proton stopping power mapping from dual-energy CT data.
    Zhang S; Han D; Williamson JF; Zhao T; Politte DG; Whiting BR; O'Sullivan JA
    Med Phys; 2019 Jan; 46(1):273-285. PubMed ID: 30421790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image domain dual material decomposition for dual-energy CT using butterfly network.
    Zhang W; Zhang H; Wang L; Wang X; Hu X; Cai A; Li L; Niu T; Yan B
    Med Phys; 2019 May; 46(5):2037-2051. PubMed ID: 30883808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonconvex prior image constrained compressed sensing (NCPICCS): theory and simulations on perfusion CT.
    Ramirez-Giraldo JC; Trzasko J; Leng S; Yu L; Manduca A; McCollough CH
    Med Phys; 2011 Apr; 38(4):2157-67. PubMed ID: 21626949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.