These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 20938489)

  • 1. Differential geometry based solvation model I: Eulerian formulation.
    Chen Z; Baker NA; Wei GW
    J Comput Phys; 2010 Nov; 229(22):8231-8258. PubMed ID: 20938489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential geometry based solvation model II: Lagrangian formulation.
    Chen Z; Baker NA; Wei GW
    J Math Biol; 2011 Dec; 63(6):1139-200. PubMed ID: 21279359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential geometry based solvation model. III. Quantum formulation.
    Chen Z; Wei GW
    J Chem Phys; 2011 Nov; 135(19):194108. PubMed ID: 22112067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale Multiphysics and Multidomain Models I: Basic Theory.
    Wei GW
    J Theor Comput Chem; 2013 Dec; 12(8):. PubMed ID: 25382892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parameter optimization in differential geometry based solvation models.
    Wang B; Wei GW
    J Chem Phys; 2015 Oct; 143(13):134119. PubMed ID: 26450304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parameterization of a geometric flow implicit solvation model.
    Thomas DG; Chun J; Chen Z; Wei G; Baker NA
    J Comput Chem; 2013 Mar; 34(8):687-95. PubMed ID: 23212974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum dynamics in continuum for proton transport II: Variational solvent-solute interface.
    Chen D; Chen Z; Wei GW
    Int J Numer Method Biomed Eng; 2012 Jan; 28(1):25-51. PubMed ID: 22328970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variational multiscale models for charge transport.
    Wei GW; Zheng Q; Chen Z; Xia K
    SIAM Rev Soc Ind Appl Math; 2012; 54(4):699-754. PubMed ID: 23172978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A super-Gaussian Poisson-Boltzmann model for electrostatic free energy calculation: smooth dielectric distribution for protein cavities and in both water and vacuum states.
    Hazra T; Ahmed Ullah S; Wang S; Alexov E; Zhao S
    J Math Biol; 2019 Jul; 79(2):631-672. PubMed ID: 31030299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variational Implicit Solvation with Solute Molecular Mechanics: From Diffuse-Interface to Sharp-Interface Models.
    Li B; Zhao Y
    SIAM J Appl Math; 2013; 73(1):1-23. PubMed ID: 24058213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential geometry based multiscale models.
    Wei GW
    Bull Math Biol; 2010 Aug; 72(6):1562-622. PubMed ID: 20169418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variational approach for nonpolar solvation analysis.
    Chen Z; Zhao S; Chun J; Thomas DG; Baker NA; Bates PW; Wei GW
    J Chem Phys; 2012 Aug; 137(8):084101. PubMed ID: 22938212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient mesh refinement for the Poisson-Boltzmann equation with boundary elements.
    Ramm V; Chaudhry JH; Cooper CD
    J Comput Chem; 2021 Mar; ():. PubMed ID: 33751643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectric pressure in continuum electrostatic solvation of biomolecules.
    Cai Q; Ye X; Luo R
    Phys Chem Chem Phys; 2012 Dec; 14(45):15917-25. PubMed ID: 23093365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.
    Sun H; Wen J; Zhao Y; Li B; McCammon JA
    J Chem Phys; 2015 Dec; 143(24):243110. PubMed ID: 26723595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DIFFUSED SOLUTE-SOLVENT INTERFACE WITH POISSON-BOLTZMANN ELECTROSTATICS: FREE-ENERGY VARIATION AND SHARP-INTERFACE LIMIT.
    Li BO; Liu Y
    SIAM J Appl Math; 2015; 75(5):2072-2092. PubMed ID: 26877556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PW-SMD: A Plane-Wave Implicit Solvation Model Based on Electron Density for Surface Chemistry and Crystalline Systems in Aqueous Solution.
    Wang Y; Teng C; Begin E; Bussiere M; Bao JL
    J Chem Theory Comput; 2024 Aug; 20(15):6826-6847. PubMed ID: 39024317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectric Boundary Force in Molecular Solvation with the Poisson-Boltzmann Free Energy: A Shape Derivative Approach.
    Li B; Cheng X; Zhang Z
    SIAM J Appl Math; 2011; 71(6):2093-2111. PubMed ID: 24058212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bridging Eulerian and Lagrangian Poisson-Boltzmann solvers by ESES.
    Ullah SA; Yang X; Jones B; Zhao S; Geng W; Wei GW
    J Comput Chem; 2024 Mar; 45(6):306-320. PubMed ID: 37830273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.