These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20938498)

  • 1. Use of directly molded poly(methyl methacrylate) channels for microfluidic applications.
    Lee SH; Kang DH; Kim HN; Suh KY
    Lab Chip; 2010 Dec; 10(23):3300-6. PubMed ID: 20938498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D nanomolding for lab-on-a-chip applications.
    Farshchian B; Park S; Choi J; Amirsadeghi A; Lee J; Park S
    Lab Chip; 2012 Nov; 12(22):4764-71. PubMed ID: 22990333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(methyl methacrylate) CE microchips replicated from poly(dimethylsiloxane) templates for the determination of cations.
    Qu S; Chen X; Chen D; Yang P; Chen G
    Electrophoresis; 2006 Dec; 27(24):4910-8. PubMed ID: 17120260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid prototyping of poly(methyl methacrylate) microfluidic systems using solvent imprinting and bonding.
    Sun X; Peeni BA; Yang W; Becerril HA; Woolley AT
    J Chromatogr A; 2007 Aug; 1162(2):162-6. PubMed ID: 17466320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein immobilization on the surface of polydimethylsiloxane and polymethyl methacrylate microfluidic devices.
    Khnouf R; Karasneh D; Albiss BA
    Electrophoresis; 2016 Feb; 37(3):529-35. PubMed ID: 26534833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of lab-on chip platforms by hot embossing and photo patterning.
    Maurya DK; Ng WY; Mahabadi KA; Liang YN; Rodríguez I
    Biotechnol J; 2007 Nov; 2(11):1381-8. PubMed ID: 17886237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imprint Molding of a Microfluidic Optical Cell on Thermoplastics with Reduced Surface Roughness for the Detection of Copper Ions.
    Wu J; Lee NY
    Anal Sci; 2016; 32(1):85-92. PubMed ID: 26753711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PMMA/PDMS valves and pumps for disposable microfluidics.
    Zhang W; Lin S; Wang C; Hu J; Li C; Zhuang Z; Zhou Y; Mathies RA; Yang CJ
    Lab Chip; 2009 Nov; 9(21):3088-94. PubMed ID: 19823724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of poly(methyl methacrylate) capillary electrophoresis microchips by in situ surface polymerization.
    Xu G; Wang J; Chen Y; Zhang L; Wang D; Chen G
    Lab Chip; 2006 Jan; 6(1):145-8. PubMed ID: 16372082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable nonpolar solvent droplet generation using a poly(dimethylsiloxane) microfluidic channel coated with poly-p-xylylene for a nanoparticle growth.
    Lim H; Moon S
    Biomed Microdevices; 2015 Aug; 17(4):70. PubMed ID: 26112614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technique for microfabrication of polymeric-based microchips from an SU-8 master with temperature-assisted vaporized organic solvent bonding.
    Koesdjojo MT; Koch CR; Remcho VT
    Anal Chem; 2009 Feb; 81(4):1652-9. PubMed ID: 19166284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospinning of poly(dimethylsiloxane)/poly(methyl methacrylate) nanofibrous membrane: fabrication and application in protein microarrays.
    Yang D; Liu X; Jin Y; Zhu Y; Zeng D; Jiang X; Ma H
    Biomacromolecules; 2009 Dec; 10(12):3335-40. PubMed ID: 19924999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of a cyclic olefin copolymer planar waveguide embedded in a multi-channel poly(methyl methacrylate) fluidic chip for evanescence excitation.
    Okagbare PI; Emory JM; Datta P; Goettert J; Soper SA
    Lab Chip; 2010 Jan; 10(1):66-73. PubMed ID: 20024052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase-changing sacrificial materials for solvent bonding of high-performance polymeric capillary electrophoresis microchips.
    Kelly RT; Pan T; Woolley AT
    Anal Chem; 2005 Jun; 77(11):3536-41. PubMed ID: 15924386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A polymer-based microfluidic device for immunosensing biochips.
    Soo Ko J; Yoon HC; Yang H; Pyo HB; Hyo Chung K; Jin Kim S; Tae Kim Y
    Lab Chip; 2003 May; 3(2):106-13. PubMed ID: 15100791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro-macro hybrid soft-lithography master (MMHSM) fabrication for lab-on-a-chip applications.
    Park J; Li J; Han A
    Biomed Microdevices; 2010 Apr; 12(2):345-51. PubMed ID: 20049640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of a poly(methyl methacrylate) injection-molded microchip and its use for high performance analysis of DNA.
    Zhou XM; Dai ZP; Liu X; Luo Y; Wang H; Lin BC
    J Sep Sci; 2005 Feb; 28(3):225-33. PubMed ID: 15776923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent developments in PDMS surface modification for microfluidic devices.
    Zhou J; Ellis AV; Voelcker NH
    Electrophoresis; 2010 Jan; 31(1):2-16. PubMed ID: 20039289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of mold rising angle and polymer concentration in solvent-assisted molding.
    Lee SH; Kim HN; Kwak RK; Suh KY
    Langmuir; 2009 Oct; 25(20):12024-9. PubMed ID: 19821619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchtop micromolding of polystyrene by soft lithography.
    Wang Y; Balowski J; Phillips C; Phillips R; Sims CE; Allbritton NL
    Lab Chip; 2011 Sep; 11(18):3089-97. PubMed ID: 21811715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.