These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
476 related articles for article (PubMed ID: 20938512)
1. A sensitive, non-damaging electrochemiluminescent aptasensor via a low potential approach at DNA-modified gold electrodes. Liu DY; Xin YY; He XW; Yin XB Analyst; 2011 Feb; 136(3):479-85. PubMed ID: 20938512 [TBL] [Abstract][Full Text] [Related]
2. The electrochemiluminescence of ruthenium complex/tripropylamine systems at DNA-modified gold electrodes. Liu DY; Xin YY; He XW; Yin XB Biosens Bioelectron; 2011 Jan; 26(5):2703-6. PubMed ID: 20880692 [TBL] [Abstract][Full Text] [Related]
3. Label-free electrochemiluminescent aptasensor with attomolar mass detection limits based on a Ru(phen)(3)(2+)-double-strand DNA composite film electrode. Yin XB; Xin YY; Zhao Y Anal Chem; 2009 Nov; 81(22):9299-305. PubMed ID: 19827791 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical aptasensor using the tripropylamine oxidation to probe intramolecular displacement between target and complementary nucleotide for protein array. Liu DY; Zhao Y; He XW; Yin XB Biosens Bioelectron; 2011 Feb; 26(6):2905-10. PubMed ID: 21183329 [TBL] [Abstract][Full Text] [Related]
5. A "turn-on" electrochemiluminescent biosensor for detecting Hg2+ at femtomole level based on the intercalation of Ru(phen)3(2+) into ds-DNA. Tang CX; Zhao Y; He XW; Yin XB Chem Commun (Camb); 2010 Dec; 46(47):9022-4. PubMed ID: 21052595 [TBL] [Abstract][Full Text] [Related]
6. [Ru(bpy)2(dcbpy)NHS] labeling/aptamer-based biosensor for the detection of lysozyme by increasing sensitivity with gold nanoparticle amplification. Bai J; Wei H; Li B; Song L; Fang L; Lv Z; Zhou W; Wang E Chem Asian J; 2008 Nov; 3(11):1935-41. PubMed ID: 18767101 [TBL] [Abstract][Full Text] [Related]
7. A solid-state electrochemiluminescence sensing platform for detection of adenosine based on ferrocene-labeled structure-switching signaling aptamer. Wang X; Dong P; He P; Fang Y Anal Chim Acta; 2010 Jan; 658(2):128-32. PubMed ID: 20103085 [TBL] [Abstract][Full Text] [Related]
8. Label-free and sensitive electrogenerated chemiluminescence aptasensor for the determination of lysozyme. Li Y; Qi H; Gao Q; Zhang C Biosens Bioelectron; 2011 Jan; 26(5):2733-6. PubMed ID: 21030242 [TBL] [Abstract][Full Text] [Related]
9. Label-free and sensitive faradic impedance aptasensor for the determination of lysozyme based on target-induced aptamer displacement. Peng Y; Zhang D; Li Y; Qi H; Gao Q; Zhang C Biosens Bioelectron; 2009 Sep; 25(1):94-9. PubMed ID: 19559590 [TBL] [Abstract][Full Text] [Related]
10. DNA biosensor based on the electrochemiluminescence of Ru(bpy)3(2+) with DNA-binding intercalators. Lee JG; Yun K; Lim GS; Lee SE; Kim S; Park JK Bioelectrochemistry; 2007 May; 70(2):228-34. PubMed ID: 17079194 [TBL] [Abstract][Full Text] [Related]
11. 4-(dimethylamino)butyric acid@PtNPs as enhancer for solid-state electrochemiluminescence aptasensor based on target-induced strand displacement. Gan X; Yuan R; Chai Y; Yuan Y; Mao L; Cao Y; Liao Y Biosens Bioelectron; 2012 Apr; 34(1):25-9. PubMed ID: 22387036 [TBL] [Abstract][Full Text] [Related]
12. A sensitive nanoporous gold-based electrochemical aptasensor for thrombin detection. Qiu H; Sun Y; Huang X; Qu Y Colloids Surf B Biointerfaces; 2010 Aug; 79(1):304-8. PubMed ID: 20452755 [TBL] [Abstract][Full Text] [Related]
13. An electrochemiluminescence aptasensor for thrombin using graphene oxide to immobilize the aptamer and the intercalated [Formula: see text] probe. Wang XY; Gao A; Lu CC; He XW; Yin XB Biosens Bioelectron; 2013 Oct; 48():120-5. PubMed ID: 23665577 [TBL] [Abstract][Full Text] [Related]
14. DNA aptasensor for the detection of ATP based on quantum dots electrochemiluminescence. Huang H; Tan Y; Shi J; Liang G; Zhu JJ Nanoscale; 2010 Apr; 2(4):606-12. PubMed ID: 20644766 [TBL] [Abstract][Full Text] [Related]
15. A replacement-type electrochemiluminescent aptasensor for lysozyme based on full-electric modification electrode coupled to silica-coated Ru(bpy) Chen Q; Xu M; Lv L; Wang X Anal Bioanal Chem; 2021 Dec; 413(30):7411-7419. PubMed ID: 34731261 [TBL] [Abstract][Full Text] [Related]
16. Electrochemiluminescent biosensor of ATP using tetrahedron structured DNA and a functional oligonucleotide for Ru(phen)3(2+) intercalation and target identification. Bu NN; Gao A; He XW; Yin XB Biosens Bioelectron; 2013 May; 43():200-4. PubMed ID: 23313611 [TBL] [Abstract][Full Text] [Related]
17. Homogeneous and label-free electrochemiluminescence aptasensor based on the difference of electrostatic interaction and exonuclease-assisted target recycling amplification. Ni J; Yang W; Wang Q; Luo F; Guo L; Qiu B; Lin Z; Yang H Biosens Bioelectron; 2018 May; 105():182-187. PubMed ID: 29412943 [TBL] [Abstract][Full Text] [Related]
18. Sensitive bifunctional aptamer-based electrochemical biosensor for small molecules and protein. Deng C; Chen J; Nie L; Nie Z; Yao S Anal Chem; 2009 Dec; 81(24):9972-8. PubMed ID: 20000640 [TBL] [Abstract][Full Text] [Related]
19. Electrogenerated chemiluminesence method for the determination of riboflavin at an ionic liquid modified gold electrode. Qi H; Cao Z; Hou L Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):211-5. PubMed ID: 21030300 [TBL] [Abstract][Full Text] [Related]
20. Electrochemiluminescence biosensor for the assay of small molecule and protein based on bifunctional aptamer and chemiluminescent functionalized gold nanoparticles. Chai Y; Tian D; Cui H Anal Chim Acta; 2012 Feb; 715():86-92. PubMed ID: 22244171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]