These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

692 related articles for article (PubMed ID: 20938527)

  • 1. Refining current knowledge on the yeast FLR1 regulatory network by combined experimental and computational approaches.
    Teixeira MC; Dias PJ; Monteiro PT; Sala A; Oliveira AL; Freitas AT; Sá-Correia I
    Mol Biosyst; 2010 Dec; 6(12):2471-81. PubMed ID: 20938527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Qualitative modelling and formal verification of the FLR1 gene mancozeb response in Saccharomyces cerevisiae.
    Monteiro PT; Dias PJ; Ropers D; Oliveira AL; Sá-Correia I; Teixeira MC; Freitas AT
    IET Syst Biol; 2011 Sep; 5(5):308-16. PubMed ID: 22010757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast adaptation to mancozeb involves the up-regulation of FLR1 under the coordinate control of Yap1, Rpn4, Pdr3, and Yrr1.
    Teixeira MC; Dias PJ; Simões T; Sá-Correia I
    Biochem Biophys Res Commun; 2008 Mar; 367(2):249-55. PubMed ID: 18086556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FLR1 gene (ORF YBR008c) is required for benomyl and methotrexate resistance in Saccharomyces cerevisiae and its benomyl-induced expression is dependent on pdr3 transcriptional regulator.
    Brôco N; Tenreiro S; Viegas CA; Sá-Correia I
    Yeast; 1999 Nov; 15(15):1595-608. PubMed ID: 10572257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor.
    Hahn JS; Neef DW; Thiele DJ
    Mol Microbiol; 2006 Apr; 60(1):240-51. PubMed ID: 16556235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional activation of FLR1 gene during Saccharomyces cerevisiae adaptation to growth with benomyl: role of Yap1p and Pdr3p.
    Tenreiro S; Fernandes AR; Sá-Correia I
    Biochem Biophys Res Commun; 2001 Jan; 280(1):216-22. PubMed ID: 11162502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative modeling of the Saccharomyces cerevisiae FLR1 regulatory network using an S-system formalism.
    Calçada D; Vinga S; Freitas AT; Oliveira AL
    J Bioinform Comput Biol; 2011 Oct; 9(5):613-30. PubMed ID: 21976379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional regulatory networks in Saccharomyces cerevisiae.
    Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA
    Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae.
    Ma M; Liu ZL
    BMC Genomics; 2010 Nov; 11():660. PubMed ID: 21106074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of complex regulatory networks and identification of promoter regulatory elements in yeast: "in silico" and "wet-lab" approaches.
    Mira NP; Teixeira MC; Sá-Correia I
    Methods Mol Biol; 2012; 809():27-48. PubMed ID: 22113266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The MFS-type efflux pump Flr1 induced by Yap1 promotes canthin-6-one resistance in yeast.
    Dejos C; Régnacq M; Bernard M; Voisin P; Bergès T
    FEBS Lett; 2013 Sep; 587(18):3045-51. PubMed ID: 23912082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional networks: reverse-engineering gene regulation on a global scale.
    Chua G; Robinson MD; Morris Q; Hughes TR
    Curr Opin Microbiol; 2004 Dec; 7(6):638-46. PubMed ID: 15556037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A specific transcriptional response of yeast cells to camptothecin dependent on the Swi4 and Mbp1 factors.
    Lotito L; Russo A; Bueno S; Chillemi G; Fogli MV; Capranico G
    Eur J Pharmacol; 2009 Jan; 603(1-3):29-36. PubMed ID: 19094980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inference of active transcriptional networks by integration of gene expression kinetics modeling and multisource data.
    Vu TT; Vohradsky J
    Genomics; 2009 May; 93(5):426-33. PubMed ID: 19442636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory factors controlling transcription of Saccharomyces cerevisiae IXR1 by oxygen levels: a model of transcriptional adaptation from aerobiosis to hypoxia implicating ROX1 and IXR1 cross-regulation.
    Castro-Prego R; Lamas-Maceiras M; Soengas P; Carneiro I; González-Siso I; Cerdán ME
    Biochem J; 2009 Dec; 425(1):235-43. PubMed ID: 19807692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salicylic acid resistance is conferred by a novel YRR1 mutation in Saccharomyces cerevisiae.
    Kodo N; Matsuda T; Doi S; Munakata H
    Biochem Biophys Res Commun; 2013 Apr; 434(1):42-7. PubMed ID: 23545261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress.
    Menezes RA; Amaral C; Batista-Nascimento L; Santos C; Ferreira RB; Devaux F; Eleutherio EC; Rodrigues-Pousada C
    Biochem J; 2008 Sep; 414(2):301-11. PubMed ID: 18439143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Yap family and its role in stress response.
    Rodrigues-Pousada C; Menezes RA; Pimentel C
    Yeast; 2010 May; 27(5):245-58. PubMed ID: 20148391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Rpn4p is a positive and negative transcriptional regulator of the ubiquitin-proteasome system].
    Karpov DS; Osipov SA; Preobrazhenskaia OV; Karpov VL
    Mol Biol (Mosk); 2008; 42(3):518-25. PubMed ID: 18702311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production.
    Larochelle M; Drouin S; Robert F; Turcotte B
    Mol Cell Biol; 2006 Sep; 26(17):6690-701. PubMed ID: 16914749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.