These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 20938771)
1. The impact of MIG1 and/or MIG2 disruption on aerobic metabolism of succinate dehydrogenase negative Saccharomyces cerevisiae. Cao H; Yue M; Li S; Bai X; Zhao X; Du Y Appl Microbiol Biotechnol; 2011 Feb; 89(3):733-8. PubMed ID: 20938771 [TBL] [Abstract][Full Text] [Related]
2. Saccharomyces cerevisiae, key role of MIG1 gene in metabolic switching: putative fermentation/oxidation. Alipourfard I; Bakhtiyari S; Datukishvili N; Haghani K; Di Renzo L; De Miranda RC; Cioccoloni G; Basiratyan Yazdi P; Mikeladze D J Biol Regul Homeost Agents; 2018; 32(3):649-654. PubMed ID: 29921394 [TBL] [Abstract][Full Text] [Related]
5. Multiple regulatory proteins mediate repression and activation by interaction with the yeast Mig1 binding site. Wu J; Trumbly RJ Yeast; 1998 Aug; 14(11):985-1000. PubMed ID: 9730278 [TBL] [Abstract][Full Text] [Related]
6. Glucose levels regulate the nucleo-mitochondrial distribution of Mig2. Fernández-Cid A; Riera A; Herrero P; Moreno F Mitochondrion; 2012 May; 12(3):370-80. PubMed ID: 22353369 [TBL] [Abstract][Full Text] [Related]
7. Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3. Westholm JO; Nordberg N; Murén E; Ameur A; Komorowski J; Ronne H BMC Genomics; 2008 Dec; 9():601. PubMed ID: 19087243 [TBL] [Abstract][Full Text] [Related]
8. [Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae]. Cai Y; Qi X; Qi Q; Lin Y; Wang Z; Wang Q Sheng Wu Gong Cheng Xue Bao; 2018 Jan; 34(1):54-67. PubMed ID: 29380571 [TBL] [Abstract][Full Text] [Related]
9. Candida krusei produces ethanol without production of succinic acid; a potential advantage for ethanol recovery by pervaporation membrane separation. Nakayama S; Morita T; Negishi H; Ikegami T; Sakaki K; Kitamoto D FEMS Yeast Res; 2008 Aug; 8(5):706-14. PubMed ID: 18399986 [TBL] [Abstract][Full Text] [Related]
10. Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae. Lutfiyya LL; Iyer VR; DeRisi J; DeVit MJ; Brown PO; Johnston M Genetics; 1998 Dec; 150(4):1377-91. PubMed ID: 9832517 [TBL] [Abstract][Full Text] [Related]
11. Characteristics of Saccharomyces cerevisiae gal1 Delta and gal1 Delta hxk2 Delta mutants expressing recombinant proteins from the GAL promoter. Kang HA; Kang WK; Go SM; Rezaee A; Krishna SH; Rhee SK; Kim JY Biotechnol Bioeng; 2005 Mar; 89(6):619-29. PubMed ID: 15696522 [TBL] [Abstract][Full Text] [Related]
12. Galactose induction of the GAL1 gene requires conditional degradation of the Mig2 repressor. Lim MK; Siew WL; Zhao J; Tay YC; Ang E; Lehming N Biochem J; 2011 May; 435(3):641-9. PubMed ID: 21323640 [TBL] [Abstract][Full Text] [Related]
13. Inactivation of the transcription factor mig1 (YGL035C) in Saccharomyces cerevisiae improves tolerance towards monocarboxylic weak acids: acetic, formic and levulinic acid. Balderas-Hernández VE; Correia K; Mahadevan R J Ind Microbiol Biotechnol; 2018 Aug; 45(8):735-751. PubMed ID: 29876685 [TBL] [Abstract][Full Text] [Related]
14. Investigation of the impact of MIG1 and MIG2 on the physiology of Saccharomyces cerevisiae. Klein CJ; Rasmussen JJ; Rønnow B; Olsson L; Nielsen J J Biotechnol; 1999 Feb; 68(2-3):197-212. PubMed ID: 10194857 [TBL] [Abstract][Full Text] [Related]
15. Isolation and characterization of the LGT1 gene encoding a low-affinity glucose transporter from Torulaspora delbrueckii. Alves-Araújo C; Hernandez-Lopez MJ; Prieto JA; Randez-Gil F; Sousa MJ Yeast; 2005 Feb; 22(3):165-75. PubMed ID: 15704215 [TBL] [Abstract][Full Text] [Related]
16. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Tokuhiro K; Ishida N; Nagamori E; Saitoh S; Onishi T; Kondo A; Takahashi H Appl Microbiol Biotechnol; 2009 Apr; 82(5):883-90. PubMed ID: 19122995 [TBL] [Abstract][Full Text] [Related]
17. A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae. Westergaard SL; Oliveira AP; Bro C; Olsson L; Nielsen J Biotechnol Bioeng; 2007 Jan; 96(1):134-45. PubMed ID: 16878332 [TBL] [Abstract][Full Text] [Related]
18. Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non-fermentable carbon source ethanol. Schoondermark-Stolk SA; Tabernero M; Chapman J; Ter Schure EG; Verrips CT; Verkleij AJ; Boonstra J FEMS Yeast Res; 2005 May; 5(8):757-66. PubMed ID: 15851104 [TBL] [Abstract][Full Text] [Related]
19. Phenotypic characterization of glucose repression mutants of Saccharomyces cerevisiae using experiments with 13C-labelled glucose. Raghevendran V; Gombert AK; Christensen B; Kötter P; Nielsen J Yeast; 2004 Jul; 21(9):769-79. PubMed ID: 15282800 [TBL] [Abstract][Full Text] [Related]
20. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Yan D; Wang C; Zhou J; Liu Y; Yang M; Xing J Bioresour Technol; 2014 Mar; 156():232-9. PubMed ID: 24508660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]