These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Integrative control of carbon, nitrogen, hydrogen, and sulfur metabolism: the central role of the Calvin-Benson-Bassham cycle. Laguna R; Joshi GS; Dangel AW; Luther AK; Tabita FR Adv Exp Med Biol; 2010; 675():265-71. PubMed ID: 20532746 [TBL] [Abstract][Full Text] [Related]
3. Maintenance and control of redox poise in Rhodobacter capsulatus strains deficient in the Calvin-Benson-Bassham pathway. Tichi MA; Tabita FR Arch Microbiol; 2000 Nov; 174(5):322-33. PubMed ID: 11131022 [TBL] [Abstract][Full Text] [Related]
4. Function of a glutathione-dependent formaldehyde dehydrogenase in Rhodobacter sphaeroides formaldehyde oxidation and assimilation. Barber RD; Donohue TJ Biochemistry; 1998 Jan; 37(2):530-7. PubMed ID: 9425073 [TBL] [Abstract][Full Text] [Related]
5. Aerobic chemolithoautotrophic growth and RubisCO function in Rhodobacter capsulatus and a spontaneous gain of function mutant of Rhodobacter sphaeroides. Paoli GC; Tabita FR Arch Microbiol; 1998 Jul; 170(1):8-17. PubMed ID: 9639598 [TBL] [Abstract][Full Text] [Related]
6. Differential expression of the CO2 fixation operons of Rhodobacter sphaeroides by the Prr/Reg two-component system during chemoautotrophic growth. Gibson JL; Dubbs JM; Tabita FR J Bacteriol; 2002 Dec; 184(23):6654-64. PubMed ID: 12426354 [TBL] [Abstract][Full Text] [Related]
7. Engineering the transcriptional activator NifA for the construction of Rhodobacter sphaeroides strains that produce hydrogen gas constitutively. Shimizu T; Teramoto H; Inui M Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9739-9749. PubMed ID: 31696284 [TBL] [Abstract][Full Text] [Related]
8. Up-regulated expression of the cbb(I) and cbb(II) operons during photoheterotrophic growth of a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion mutant of Rhodobacter sphaeroides. Smith SA; Tabita FR J Bacteriol; 2002 Dec; 184(23):6721-4. PubMed ID: 12426361 [TBL] [Abstract][Full Text] [Related]
9. Interactive control of Rhodobacter capsulatus redox-balancing systems during phototrophic metabolism. Tichi MA; Tabita FR J Bacteriol; 2001 Nov; 183(21):6344-54. PubMed ID: 11591679 [TBL] [Abstract][Full Text] [Related]
10. A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation. Joshi HM; Tabita FR Proc Natl Acad Sci U S A; 1996 Dec; 93(25):14515-20. PubMed ID: 8962083 [TBL] [Abstract][Full Text] [Related]
11. Photolithoautotrophic growth and control of CO2 fixation in Rhodobacter sphaeroides and Rhodospirillum rubrum in the absence of ribulose bisphosphate carboxylase-oxygenase. Wang X; Modak HV; Tabita FR J Bacteriol; 1993 Nov; 175(21):7109-14. PubMed ID: 8226655 [TBL] [Abstract][Full Text] [Related]
12. Expression of glnB and a glnB-like gene (glnK) in a ribulose bisphosphate carboxylase/oxygenase-deficient mutant of Rhodobacter sphaeroides. Qian Y; Tabita FR J Bacteriol; 1998 Sep; 180(17):4644-9. PubMed ID: 9721307 [TBL] [Abstract][Full Text] [Related]
13. The poor growth of Rhodospirillum rubrum mutants lacking RubisCO is due to the accumulation of ribulose-1,5-bisphosphate. Wang D; Zhang Y; Pohlmann EL; Li J; Roberts GP J Bacteriol; 2011 Jul; 193(13):3293-303. PubMed ID: 21531802 [TBL] [Abstract][Full Text] [Related]
14. Acetate-dependent photoheterotrophic growth and the differential requirement for the Calvin-Benson-Bassham reductive pentose phosphate cycle in Rhodobacter sphaeroides and Rhodopseudomonas palustris. Laguna R; Tabita FR; Alber BE Arch Microbiol; 2011 Feb; 193(2):151-4. PubMed ID: 21104179 [TBL] [Abstract][Full Text] [Related]
15. Metabolic network modeling of redox balancing and biohydrogen production in purple nonsulfur bacteria. Hädicke O; Grammel H; Klamt S BMC Syst Biol; 2011 Sep; 5():150. PubMed ID: 21943387 [TBL] [Abstract][Full Text] [Related]
16. Analysis of the cbbXYZ operon in Rhodobacter sphaeroides. Gibson JL; Tabita FR J Bacteriol; 1997 Feb; 179(3):663-9. PubMed ID: 9006018 [TBL] [Abstract][Full Text] [Related]
17. Transposon mutagenesis and physiological analysis of strains containing inactivated form I and form II ribulose bisphosphate carboxylase/oxygenase genes in Rhodobacter sphaeroides. Falcone DL; Quivey RG; Tabita FR J Bacteriol; 1988 Jan; 170(1):5-11. PubMed ID: 2826406 [TBL] [Abstract][Full Text] [Related]
18. Isotope discrimination by form IC RubisCO from Ralstonia eutropha and Rhodobacter sphaeroides, metabolically versatile members of 'Proteobacteria' from aquatic and soil habitats. Thomas PJ; Boller AJ; Satagopan S; Tabita FR; Cavanaugh CM; Scott KM Environ Microbiol; 2019 Jan; 21(1):72-80. PubMed ID: 30246324 [TBL] [Abstract][Full Text] [Related]
19. Reductive effect of H(2) uptake and poly-beta-hydroxybutyrate formation on nitrogenase-mediated H(2) accumulation of Rhodobacter sphaeroides according to light intensity. Lee IH; Park JY; Kho DH; Kim MS; Lee JK Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):147-53. PubMed ID: 12382056 [TBL] [Abstract][Full Text] [Related]