These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 20939527)
1. Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction. Hirayama M; Ido H; Kim K; Cho W; Tamura K; Mizuki J; Kanno R J Am Chem Soc; 2010 Nov; 132(43):15268-76. PubMed ID: 20939527 [TBL] [Abstract][Full Text] [Related]
2. Epitaxial growth and electrochemical properties of Li4Ti5O12 thin-film lithium battery anodes. Hirayama M; Kim K; Toujigamori T; Cho W; Kanno R Dalton Trans; 2011 Mar; 40(12):2882-7. PubMed ID: 21308112 [TBL] [Abstract][Full Text] [Related]
3. Study of surface reaction of spinel Li4Ti5O12 during the first lithium insertion and extraction processes using atomic force microscopy and analytical transmission electron microscopy. Kitta M; Akita T; Maeda Y; Kohyama M Langmuir; 2012 Aug; 28(33):12384-92. PubMed ID: 22839691 [TBL] [Abstract][Full Text] [Related]
4. Structural changes in surface and bulk LiNi0.5Mn0.5O2 during electrochemical reaction on epitaxial thin-film electrodes characterized by in situ X-ray scattering. Sakamoto K; Hirayama M; Konishi H; Sonoyama N; Dupré N; Guyomard D; Tamura K; Mizuki J; Kanno R Phys Chem Chem Phys; 2010 Apr; 12(15):3815-23. PubMed ID: 20358075 [TBL] [Abstract][Full Text] [Related]
5. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2. Yabuuchi N; Yoshii K; Myung ST; Nakai I; Komaba S J Am Chem Soc; 2011 Mar; 133(12):4404-19. PubMed ID: 21375288 [TBL] [Abstract][Full Text] [Related]
6. The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation. Cherkashinin G; Nikolowski K; Ehrenberg H; Jacke S; Dimesso L; Jaegermann W Phys Chem Chem Phys; 2012 Sep; 14(35):12321-31. PubMed ID: 22858824 [TBL] [Abstract][Full Text] [Related]
7. A structural study of solid electrolyte interface on negative electrode of lithium-Ion battery by electron microscopy. Matsushita T; Watanabe J; Nakao T; Yamashita S Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i21. PubMed ID: 25359815 [TBL] [Abstract][Full Text] [Related]
8. Chemical distribution and bonding of lithium in intercalated graphite: identification with optimized electron energy loss spectroscopy. Wang F; Graetz J; Moreno MS; Ma C; Wu L; Volkov V; Zhu Y ACS Nano; 2011 Feb; 5(2):1190-7. PubMed ID: 21218844 [TBL] [Abstract][Full Text] [Related]
9. Initial solid electrolyte interphase formation process of graphite anode in LiPF6 electrolyte: an in situ ECSTM investigation. Wang L; Deng X; Dai PX; Guo YG; Wang D; Wan LJ Phys Chem Chem Phys; 2012 May; 14(20):7330-6. PubMed ID: 22526455 [TBL] [Abstract][Full Text] [Related]
10. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
11. In situ determination of the liquid/solid interface thickness and composition for the Li ion cathode LiMn(1.5)Ni(0.5)O4. Browning JF; Baggetto L; Jungjohann KL; Wang Y; Tenhaeff WE; Keum JK; Wood DL; Veith GM ACS Appl Mater Interfaces; 2014 Nov; 6(21):18569-76. PubMed ID: 25285852 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and electrochemical properties of chemically substituted LiMn2O4 prepared by a solution-based gel method. He BL; Zhou WJ; Liang YY; Bao SJ; Li HL J Colloid Interface Sci; 2006 Aug; 300(2):633-9. PubMed ID: 16782119 [TBL] [Abstract][Full Text] [Related]
14. Conformal surface coatings to enable high volume expansion Li-ion anode materials. Riley LA; Cavanagh AS; George SM; Jung YS; Yan Y; Lee SH; Dillon AC Chemphyschem; 2010 Jul; 11(10):2124-30. PubMed ID: 20449864 [TBL] [Abstract][Full Text] [Related]
15. Effect of substrate on the atomic structure and physical properties of thermoelectric Ca₃Co₄O₉ thin films. Qiao Q; Gulec A; Paulauskas T; Kolesnik S; Dabrowski B; Ozdemir M; Boyraz C; Mazumdar D; Gupta A; Klie RF J Phys Condens Matter; 2011 Aug; 23(30):305005. PubMed ID: 21719960 [TBL] [Abstract][Full Text] [Related]
16. Growth evolution of laser-ablated Sr(2)FeMoO(6) nanostructured films: Effects of substrate-induced strain on the surface morphology and film quality. Jalili H; Heinig NF; Leung KT J Chem Phys; 2010 May; 132(20):204701. PubMed ID: 20515104 [TBL] [Abstract][Full Text] [Related]
17. Equilibrium lithium-ion transport between nanocrystalline lithium-inserted anatase TiO2 and the electrolyte. Ganapathy S; van Eck ER; Kentgens AP; Mulder FM; Wagemaker M Chemistry; 2011 Dec; 17(52):14811-6. PubMed ID: 22120842 [TBL] [Abstract][Full Text] [Related]
18. Biomimetic synthesis of metal ion-doped hierarchical crystals using a gel matrix: formation of cobalt-doped LiMn(2)O(4) with improved electrochemical properties through a cobalt-doped MnCO(3) precursor. Kokubu T; Oaki Y; Uchiyama H; Hosono E; Zhou H; Imai H Chem Asian J; 2010 Apr; 5(4):792-8. PubMed ID: 20198677 [TBL] [Abstract][Full Text] [Related]
19. Structural properties of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 relaxor ferroelectric thin films on SrRuO3 conducting oxides. Lee JH; Choi MR; Jo W; Jang JY; Kim MY Ultramicroscopy; 2008 Sep; 108(10):1106-9. PubMed ID: 18547732 [TBL] [Abstract][Full Text] [Related]
20. Sputtering graphite coating to improve the elevated-temperature cycling ability of the LiMn2O4 electrode. Wang J; Zhang Q; Li X; Wang Z; Guo H; Xu D; Zhang K Phys Chem Chem Phys; 2014 Aug; 16(30):16021-9. PubMed ID: 24963917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]