These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 20939527)

  • 21. Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties.
    Liu XR; Deng X; Liu RR; Yan HJ; Guo YG; Wang D; Wan LJ
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20317-23. PubMed ID: 25380518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface structure at the ionic liquid-electrified metal interface.
    Baldelli S
    Acc Chem Res; 2008 Mar; 41(3):421-31. PubMed ID: 18232666
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery.
    Zhang J; Lu Q; Fang J; Wang J; Yang J; NuLi Y
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17965-73. PubMed ID: 25229991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing the electrode/electrolyte interface in the lithium excess layered oxide Li1.2Ni0.2Mn0.6O2.
    Carroll KJ; Qian D; Fell C; Calvin S; Veith GM; Chi M; Baggetto L; Meng YS
    Phys Chem Chem Phys; 2013 Jul; 15(26):11128-38. PubMed ID: 23722534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preliminary studies in the electrodeposition of PbSe/PbTe superlattice thin films via electrochemical atomic layer deposition (ALD).
    Vaidyanathan R; Cox SM; Happek U; Banga D; Mathe MK; Stickney JL
    Langmuir; 2006 Dec; 22(25):10590-5. PubMed ID: 17129034
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temperature effects on the electrochemical behavior of spinel LiMn(2)O(4) in quaternary ammonium-based ionic liquid electrolyte.
    Zheng H; Zhang H; Fu Y; Abe T; Ogumi Z
    J Phys Chem B; 2005 Jul; 109(28):13676-84. PubMed ID: 16852714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cathodic modifications of platinum surfaces in organic solvent: reversibility and cation type effects.
    Ghilane J; Guilloux-Viry M; Lagrost C; Hapiot P; Simonet J
    J Phys Chem B; 2005 Aug; 109(31):14925-31. PubMed ID: 16852890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simple electrochemical method for deposition and voltammetric inspection of silver particles at the liquid-liquid interface of a thin-film electrode.
    Mirceski V; Gulaboski R
    J Phys Chem B; 2006 Feb; 110(6):2812-20. PubMed ID: 16471890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct hydrothermal synthesis of ternary Li-Mn-O oxide ion-sieves.
    Zhang QH; Sun SY; Li SP; Yin XS; Yu JG
    Ann N Y Acad Sci; 2009 Apr; 1161():500-7. PubMed ID: 19426343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ analytical techniques for battery interface analysis.
    Tripathi AM; Su WN; Hwang BJ
    Chem Soc Rev; 2018 Feb; 47(3):736-851. PubMed ID: 29308803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrostatic layer-by-layer deposition and electrochemical characterization of thin films composed of MnO2 nanoparticles in a room-temperature ionic liquid.
    Benedetti TM; Bazito FF; Ponzio EA; Torresi RM
    Langmuir; 2008 Apr; 24(7):3602-10. PubMed ID: 18290678
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface Engineering of a LiMn
    Su L; Smith PM; Anand P; Reeja-Jayan B
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27063-27073. PubMed ID: 30040379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unravelling the Interface Layer Formation and Gas Evolution/Suppression on a TiNb
    Wu X; Lou S; Cheng X; Lin C; Gao J; Ma Y; Zuo P; Du C; Gao Y; Yin G
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27056-27062. PubMed ID: 30035529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing the High-Voltage Cycling Performance of LiNi(0.5)Mn(0.3)Co(0.2)O2 by Retarding Its Interfacial Reaction with an Electrolyte by Atomic-Layer-Deposited Al2O3.
    Su Y; Cui S; Zhuo Z; Yang W; Wang X; Pan F
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25105-12. PubMed ID: 26501963
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies of the interfacial properties of an electroplated Sn thin film electrode/electrolyte using in situ MFTIRS and EQCM.
    Li JT; Chen SR; Fan XY; Huang L; Sun SG
    Langmuir; 2007 Dec; 23(26):13174-80. PubMed ID: 18020462
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of surface oxides in the formation of solid-electrolyte interphases at silicon electrodes for lithium-ion batteries.
    Schroder KW; Dylla AG; Harris SJ; Webb LJ; Stevenson KJ
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21510-24. PubMed ID: 25402271
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanostructure of buried interface layers in TiO₂ anatase thin films grown on LaAlO₃ and SrTiO₃ substrates.
    Ciancio R; Carlino E; Aruta C; Maccariello D; Granozio FM; Scotti di Uccio U
    Nanoscale; 2012 Jan; 4(1):91-4. PubMed ID: 22024736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HAADF-STEM analysis of layered double perovskite La(2)CuSnO(6) grown epitaxially.
    Haruta M; Komatsu H; Kurata H; Shimakawa Y; Isoda S
    J Microsc; 2009 Nov; 236(2):100-3. PubMed ID: 19903232
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct calculation of Li-ion transport in the solid electrolyte interphase.
    Shi S; Lu P; Liu Z; Qi Y; Hector LG; Li H; Harris SJ
    J Am Chem Soc; 2012 Sep; 134(37):15476-87. PubMed ID: 22909233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.