These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 20939527)
41. Electronic structure of lithium battery interphase compounds: comparison between inelastic x-ray scattering measurements and theory. Fister TT; Schmidt M; Fenter P; Johnson CS; Slater MD; Chan MK; Shirley EL J Chem Phys; 2011 Dec; 135(22):224513. PubMed ID: 22168709 [TBL] [Abstract][Full Text] [Related]
42. In Situ Observation of Interface Evolution on a Graphite Anode by Scanning Electrochemical Microscopy. Zeng X; Liu D; Wang S; Liu S; Cai X; Zhang L; Zhao R; Li B; Kang F ACS Appl Mater Interfaces; 2020 Aug; 12(33):37047-37053. PubMed ID: 32814414 [TBL] [Abstract][Full Text] [Related]
43. Construction of highly ordered lamellar nanostructures through Langmuir-Blodgett deposition of molecularly thin titania nanosheets tens of micrometers wide and their excellent dielectric properties. Akatsuka K; Haga MA; Ebina Y; Osada M; Fukuda K; Sasaki T ACS Nano; 2009 May; 3(5):1097-106. PubMed ID: 19402657 [TBL] [Abstract][Full Text] [Related]
47. Microstructure and electronic band structure of pulsed laser deposited iron fluoride thin film for battery electrodes. Santos-Ortiz R; Volkov V; Schmid S; Kuo FL; Kisslinger K; Nag S; Banerjee R; Zhu Y; Shepherd ND ACS Appl Mater Interfaces; 2013 Apr; 5(7):2387-91. PubMed ID: 23402585 [TBL] [Abstract][Full Text] [Related]
48. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects. Cai K; Rechtenbach A; Hao J; Bossert J; Jandt KD Biomaterials; 2005 Oct; 26(30):5960-71. PubMed ID: 15913761 [TBL] [Abstract][Full Text] [Related]
49. Atomic-Level Changes during Electrochemical Cycling of Oriented LiMn Ikuhara YH; Gao X; Kawahara K; Fisher CAJ; Kuwabara A; Ishikawa R; Moriwake H; Ikuhara Y ACS Appl Mater Interfaces; 2022 Feb; 14(5):6507-6517. PubMed ID: 35084828 [TBL] [Abstract][Full Text] [Related]
50. Understanding the Conductive Carbon Additive on Electrode/Electrolyte Interface Formation in Lithium-Ion Batteries via Liu S; Zeng X; Liu D; Wang S; Zhang L; Zhao R; Kang F; Li B Front Chem; 2020; 8():114. PubMed ID: 32161749 [TBL] [Abstract][Full Text] [Related]
52. New reactor dedicated to in operando studies of model catalysts by means of surface x-ray diffraction and grazing incidence small angle x-ray scattering. Saint-Lager MC; Bailly A; Dolle P; Baudoing-Savois R; Taunier P; Garaudée S; Cuccaro S; Douillet S; Geaymond O; Perroux G; Tissot O; Micha JS; Ulrich O; Rieutord F Rev Sci Instrum; 2007 Aug; 78(8):083902. PubMed ID: 17764330 [TBL] [Abstract][Full Text] [Related]
53. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
54. Internal structure of nanoporous TiO2/polyion thin films prepared by layer-by-layer deposition. Kniprath R; Duhm S; Glowatzki H; Koch N; Rogaschewski S; Rabe JP; Kirstein S Langmuir; 2007 Sep; 23(19):9860-5. PubMed ID: 17696454 [TBL] [Abstract][Full Text] [Related]
55. Lithium Electrodeposition Dynamics in Aprotic Electrolyte Observed in Situ via Transmission Electron Microscopy. Leenheer AJ; Jungjohann KL; Zavadil KR; Sullivan JP; Harris CT ACS Nano; 2015 Apr; 9(4):4379-89. PubMed ID: 25785517 [TBL] [Abstract][Full Text] [Related]
56. Suppression of phase transition in LiTb(0.01)Mn(1.99)O4 cathodes with fast Li+ diffusion. Lee DK; Han SC; Ahn D; Singh SP; Sohn KS; Pyo M ACS Appl Mater Interfaces; 2012 Dec; 4(12):6842-8. PubMed ID: 23157333 [TBL] [Abstract][Full Text] [Related]
57. Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach. Lu J; Zhan C; Wu T; Wen J; Lei Y; Kropf AJ; Wu H; Miller DJ; Elam JW; Sun YK; Qiu X; Amine K Nat Commun; 2014 Dec; 5():5693. PubMed ID: 25514346 [TBL] [Abstract][Full Text] [Related]
58. Using atomic layer deposition to hinder solvent decomposition in lithium ion batteries: first-principles modeling and experimental studies. Leung K; Qi Y; Zavadil KR; Jung YS; Dillon AC; Cavanagh AS; Lee SH; George SM J Am Chem Soc; 2011 Sep; 133(37):14741-54. PubMed ID: 21797223 [TBL] [Abstract][Full Text] [Related]
59. Elucidating the beneficial effect of vinylene carbonate on the electrochemistry of antimony electrodes in lithium batteries. Martín F; Morales J; Sánchez L Chemphyschem; 2008 Dec; 9(17):2610-7. PubMed ID: 18988210 [TBL] [Abstract][Full Text] [Related]
60. Tin nanoparticle thin film electrodes fabricated by the vacuum filtration method for enhanced battery performance. Lee JH; Kong BS; Baek YK; Yang SB; Jung HT Nanotechnology; 2009 Jun; 20(23):235203. PubMed ID: 19448286 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]